235k views
9 votes
What is the simplified expression​

What is the simplified expression​-example-1

2 Answers

4 votes

Solution:


\rightarrow (4^(-3) * 3^(4) * 4^(2) )/(3^(5) * 4^(-2) )


\rightarrow 4^(-3 + 2) * 3^(4 - 5) * 4^(2) }


\rightarrow 4^(-1) * 3^(-1) * 16}


\rightarrow (1)/(4) * (1)/(3) * 16}


\rightarrow (1)/(12) * 16}


\rightarrow (16)/(12)


\rightarrow \boxed{\bold{(4)/(3) \tex\text{ (Option B)}}}

User Juan Lara
by
8.2k points
10 votes

Answer:


\frac43

Explanation:


(4^(-3)\cdot3^4\cdot4^2)/(3^5\cdot4^(-2))

Separate like terms:


\implies (4^(-3)\cdot4^2)/(4^(-2))\cdot (3^4)/(3^5)

Use exponent rule
a^b \cdot a^c=a^((b+c)) :


\implies (4^((-3+2)))/(4^(-2))\cdot (3^4)/(3^5)


\implies (4^(-1))/(4^(-2))\cdot (3^4)/(3^5)

Use exponent rule
(a^b)/(a^c)=a^((b-c))


\implies 4^((-1--2))\cdot {3^((4-5))


\implies 4^(1)\cdot {3^(-1)

Use exponent rule
a^(-1)=(1)/(a)


\implies 4\cdot \frac13


\implies \frac43

User Hsgubert
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories