Answer:
Part A
Cone
![\mathsf{volume \ of \ a \ cone=\frac13\pi r^2h}](https://img.qammunity.org/2023/formulas/mathematics/college/ibdvelsde9rzat9khsh8vo5o5o8d58tkw0.png)
(where r is the radius and h is the height)
Given:
![\implies \mathsf{volume \ of \ the \ cone=\frac13\pi \cdot a^2\cdot2a=\frac23\pi a^3}](https://img.qammunity.org/2023/formulas/mathematics/college/4lj9ysrag180yro1h8ktkjti3kjydoemrc.png)
Hemisphere
![\mathsf{volume \ of \ a \ sphere=\frac43\pi r^3}](https://img.qammunity.org/2023/formulas/mathematics/college/i6kl4qmlmfl4uc71s5x9cklb59ym98qr55.png)
![\implies \mathsf{volume \ of \ a \ hemisphere=\frac12 \cdot\frac43\pi r^3=\frac23\pi r^3}](https://img.qammunity.org/2023/formulas/mathematics/college/uxixc87ejlu4b9x6q6ad1rvo2jf8lws44z.png)
Given
![\implies \mathsf{volume \ of \ the \ hemisphere=\frac23\pi a^3}](https://img.qammunity.org/2023/formulas/mathematics/college/h7h5mtr1izwrxtiujicusmk7ze03kbk4wp.png)
Therefore
volume of cone with radius a = volume of hemisphere with radius a
Part B
![6.82^2*\sqrt[3]{0.005}](https://img.qammunity.org/2023/formulas/mathematics/college/qgw6rkh79wg4svgfea723rrwxx75km1ri5.png)
Take log of base 10:
![\implies \log_(10)(6.82^2*\sqrt[3]{0.005})](https://img.qammunity.org/2023/formulas/mathematics/college/zij40bu7q96xpjprdpi9hcyix5g2hhyw7q.png)
Using log law
:
![\implies \log_(10)(6.82^2)+\log_(10)(\sqrt[3]{0.005})](https://img.qammunity.org/2023/formulas/mathematics/college/28d6z4e54y18d4t79p9ci35p3bey6i1lmh.png)
Using low law
![\log(a^b)=b \log a](https://img.qammunity.org/2023/formulas/mathematics/college/oooah1mvzjms9095n097m0hjlw1a2z6s4y.png)
![\implies 2\log_(10)(6.82)+\frac13\log_(10)(0.005)](https://img.qammunity.org/2023/formulas/mathematics/college/nc1c9a1jknsi2ft4vvebrlua48j7mzh8eh.png)
Log tables
The characteristic of the logarithm of a number is the exponent of 10 in its scientific notation.
The mantissa is found using the log tables and is always prefixed by a decimal point.
The row is the first two non-zero digits of the number, and the column is the 3rd digit of the number
Use the log tables to find
:
6.82 = 6.82 × 10⁰
⇒ characteristic = 0
log table: row 68, column 2 ⇒ mantissa 8338 ⇒ 0.8338
characteristic + mantissa = 0 + 0.8338 = 0.8338
Therefore,
![\log_(10)(6.82)=0.8338](https://img.qammunity.org/2023/formulas/mathematics/college/ublc1i12ypnjsldbvv0tmqpvxyx695u5d7.png)
Use the log tables to find
:
![0.005 = 5.0 * 10^(-3)](https://img.qammunity.org/2023/formulas/mathematics/college/w2av9yxnciefy2wqk0f2fo0vs9gsyy0iac.png)
⇒ characteristic = -3
log table: row 50, column 0 ⇒ mantissa 6990 ⇒ 0.6990
characteristic + mantissa = -3 + 0.6990 = -2.301
Therefore,
![\log_(10)(0.005)=-2.301](https://img.qammunity.org/2023/formulas/mathematics/college/bv5ydco7s7o9sfybsizqssvrpvvtf3vto0.png)
Therefore,
![2\log_(10)(6.82)+\frac13\log_(10)(0.005)](https://img.qammunity.org/2023/formulas/mathematics/college/fx4pt43nu69f27ua8m2wz77gslcumv1aoe.png)
![\implies 2\cdot0.8338 + \frac13 \cdot -2.301](https://img.qammunity.org/2023/formulas/mathematics/college/dc73p7ceukier8desq55m725rfmphschv8.png)
![\implies 1.6676 - 0.767](https://img.qammunity.org/2023/formulas/mathematics/college/s686llzkb90jmk14wiuog07617u5onfjbj.png)
![\implies 0.9006](https://img.qammunity.org/2023/formulas/mathematics/college/4200syfmk0x5z8iflr8rv77uaazv8x2oxe.png)
Therefore,
![\log_(10)(6.82^2*\sqrt[3]{0.005})=0.9006](https://img.qammunity.org/2023/formulas/mathematics/college/ix632adv9i8jw5o9vdulkzksajlby89vv3.png)
Using
![\log_(a)b=c \implies a^c=b](https://img.qammunity.org/2023/formulas/mathematics/college/p5ekygckgwj4v1frx8tkwrniawnyk582y5.png)
![\implies 6.82^2*\sqrt[3]{0.005}=10^(0.9006)](https://img.qammunity.org/2023/formulas/mathematics/college/zj2nyouil2257knpoa3xx580cyjzu02we1.png)
![\implies 6.82^2*\sqrt[3]{0.005}=7.954](https://img.qammunity.org/2023/formulas/mathematics/college/vrmmnswuzlweck3idjw4lcwiqah1w5bfcj.png)