11.1k views
2 votes
Answer the Both Question in the image using the knowledge of Volume of Solid. 50 points​

Answer the Both Question in the image using the knowledge of Volume of Solid. 50 points-example-1
User Jaeyoung
by
7.2k points

2 Answers

5 votes

given for cone:

  • radius: a
  • height: 2a

volume of cone:


\sf \rightarrow (1)/(3) \pi r^2h


\sf \rightarrow (1)/(3) \pi (a)^2(2a)


\sf \rightarrow (2\pi a^3)/(3)

no metal wasted means no volume wasted while melting so volume: same.

volume of hemisphere:


\hookrightarrow \sf (2)/(3) \pi r^3

This is equal to the volume of cone.


\hookrightarrow \sf (2)/(3) \pi r^3 = (2\pi a^3)/(3)


\hookrightarrow \sf a^3 = r^3


\hookrightarrow \sf a = r

Therefore shown that radius of cone is similar to radius of hemisphere.

(b)


6.82^2 *\sqrt[3]{0.005}


7.9535


7.95

User Jay Dangar
by
7.7k points
3 votes

Answer:

Part A

Cone


\mathsf{volume \ of \ a \ cone=\frac13\pi r^2h}

(where r is the radius and h is the height)

Given:

  • r = a
  • h = 2r = 2a


\implies \mathsf{volume \ of \ the \ cone=\frac13\pi \cdot a^2\cdot2a=\frac23\pi a^3}

Hemisphere


\mathsf{volume \ of \ a \ sphere=\frac43\pi r^3}


\implies \mathsf{volume \ of \ a \ hemisphere=\frac12 \cdot\frac43\pi r^3=\frac23\pi r^3}

Given

  • r = a


\implies \mathsf{volume \ of \ the \ hemisphere=\frac23\pi a^3}

Therefore

volume of cone with radius a = volume of hemisphere with radius a

Part B


6.82^2*\sqrt[3]{0.005}

Take log of base 10:


\implies \log_(10)(6.82^2*\sqrt[3]{0.005})

Using log law
\log(a * b)=\log a+\log b:


\implies \log_(10)(6.82^2)+\log_(10)(\sqrt[3]{0.005})

Using low law
\log(a^b)=b \log a


\implies 2\log_(10)(6.82)+\frac13\log_(10)(0.005)

Log tables

The characteristic of the logarithm of a number is the exponent of 10 in its scientific notation.

The mantissa is found using the log tables and is always prefixed by a decimal point.

The row is the first two non-zero digits of the number, and the column is the 3rd digit of the number

Use the log tables to find
\log_(10)(6.82):

6.82 = 6.82 × 10⁰

⇒ characteristic = 0

log table: row 68, column 2 ⇒ mantissa 8338 ⇒ 0.8338

characteristic + mantissa = 0 + 0.8338 = 0.8338

Therefore,
\log_(10)(6.82)=0.8338

Use the log tables to find
\log_(10)(0.005):


0.005 = 5.0 * 10^(-3)

⇒ characteristic = -3

log table: row 50, column 0 ⇒ mantissa 6990 ⇒ 0.6990

characteristic + mantissa = -3 + 0.6990 = -2.301

Therefore,
\log_(10)(0.005)=-2.301

Therefore,


2\log_(10)(6.82)+\frac13\log_(10)(0.005)


\implies 2\cdot0.8338 + \frac13 \cdot -2.301


\implies 1.6676 - 0.767


\implies 0.9006

Therefore,


\log_(10)(6.82^2*\sqrt[3]{0.005})=0.9006

Using
\log_(a)b=c \implies a^c=b


\implies 6.82^2*\sqrt[3]{0.005}=10^(0.9006)


\implies 6.82^2*\sqrt[3]{0.005}=7.954

User Mahmoud Maghrabi
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories