197k views
14 votes
Solve for x using logarithm:
25^x-3(5^x)=0​

Solve for x using logarithm: 25^x-3(5^x)=0​-example-1
User Dbort
by
3.4k points

1 Answer

6 votes

Answer:


x = 0.68

Explanation:

We would like to find out the value of x using logarithms of the given equation .The equation is ,


\longrightarrow 25^x - 3(5^x)=0\\

Add
3(5^x) on both sides,


\longrightarrow 25^x = 3(5^x)

Using log to the base 10 on both sides, we have;


\longrightarrow log_(10)(25^x) = log_(10)\{3(5^x)\}

Recall that
log(ab ) = log\ a + log\ b .


\longrightarrow log_(10)(25^x)=log_(10)3 + log_(10)5^x

Recall the properties of logarithm as
log\ a^b = b\ log\ a .


\longrightarrow xlog25 = log_(10)3 + xlog_(10)5

Again we can rewrite it as ,


\longrightarrow xlog(5^2)=log_(10)3+xlog_(10)5\\


\longrightarrow 2x\ log_(10)5 = log_(10)3+xlog_(10)5 \\


\longrightarrow 2x\ log_(10)5-x\ log_(10)5 = log_(10)5

Simplify,


\longrightarrow x\ log_(10)5=log_(10)3

Divide both sides by log5 ,


\longrightarrow x =(log_(10)3)/(log_(10)5)

Put on the values of log 3 and log5 ,


\longrightarrow x =(0.47)/(0.69)

Simplify,


\longrightarrow \underline{{\underline{\boldsymbol{ x = 0.68}}}}

And we are done!

User MrGrigg
by
2.8k points