197k views
14 votes
Solve for x using logarithm:
25^x-3(5^x)=0​

Solve for x using logarithm: 25^x-3(5^x)=0​-example-1
User Dbort
by
7.9k points

1 Answer

6 votes

Answer:


x = 0.68

Explanation:

We would like to find out the value of x using logarithms of the given equation .The equation is ,


\longrightarrow 25^x - 3(5^x)=0\\

Add
3(5^x) on both sides,


\longrightarrow 25^x = 3(5^x)

Using log to the base 10 on both sides, we have;


\longrightarrow log_(10)(25^x) = log_(10)\{3(5^x)\}

Recall that
log(ab ) = log\ a + log\ b .


\longrightarrow log_(10)(25^x)=log_(10)3 + log_(10)5^x

Recall the properties of logarithm as
log\ a^b = b\ log\ a .


\longrightarrow xlog25 = log_(10)3 + xlog_(10)5

Again we can rewrite it as ,


\longrightarrow xlog(5^2)=log_(10)3+xlog_(10)5\\


\longrightarrow 2x\ log_(10)5 = log_(10)3+xlog_(10)5 \\


\longrightarrow 2x\ log_(10)5-x\ log_(10)5 = log_(10)5

Simplify,


\longrightarrow x\ log_(10)5=log_(10)3

Divide both sides by log5 ,


\longrightarrow x =(log_(10)3)/(log_(10)5)

Put on the values of log 3 and log5 ,


\longrightarrow x =(0.47)/(0.69)

Simplify,


\longrightarrow \underline{{\underline{\boldsymbol{ x = 0.68}}}}

And we are done!

User MrGrigg
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories