Answer:
![\int\limits^5_1 {(x^2-x+1)} \, dx= (100)/(3)\approx33.33units^2](https://img.qammunity.org/2022/formulas/mathematics/college/e3wjqx6xj4eqf9d2hpkvaqrf20ug021i5s.png)
Explanation:
To determine the area of the definite integral, we take each term and find its corresponding integral. We know that
, so therefore we rewrite the expression as
.
Now, we plug in each limit into the expression and find the difference between them:
![((5^3)/(3)-(5^2)/(2)+5)-((1^3)/(3)-(1^2)/(2)+1)](https://img.qammunity.org/2022/formulas/mathematics/college/h09qntomtz2sdd2x6txo0ku93om58mdw80.png)
![((125)/(3)-(25)/(2)+5)-((1)/(3)-(1)/(2)+1)](https://img.qammunity.org/2022/formulas/mathematics/college/tbp3bz0hs9a1aax82tgfhtnqkhlnpw6i98.png)
![((250)/(6)-(75)/(6)+(30)/(6) )-((2)/(6)-(3)/(6)+(6)/(6))](https://img.qammunity.org/2022/formulas/mathematics/college/ppmwqwfax1meiyamquj3dewh911xpd2wxn.png)
![((205)/(6))-((5)/(6))](https://img.qammunity.org/2022/formulas/mathematics/college/6c3n9povdfjjyx3pi8210xw1g40zr2fc27.png)
![(200)/(6)](https://img.qammunity.org/2022/formulas/mathematics/college/jkts73zvl77m2hk9w8o8lv0u49mduqw8vk.png)
![(100)/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/3ka7yp7xvty6f8owieivp4gprsob1301an.png)
Therefore,
![\int\limits^5_1 {(x^2-x+1)} \, dx= (100)/(3)\approx33.33units^2](https://img.qammunity.org/2022/formulas/mathematics/college/e3wjqx6xj4eqf9d2hpkvaqrf20ug021i5s.png)