a. What can you use to find the height of the pole?
solution: We can use Pythagoras theorem to find the height of the pole.
b. Write and solve a quadratic equation to find the height of the pole.
solution:
a² + b² = c²
![\sf (x)^2 + (x-3)^2 = 15^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/sgt6119jw8alqzktc0jhe9p09tesuh0p50.png)
![\sf x^2 + x^2 - 6x + 9 = 15^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/cr3493um63saj4j7cp0uw4hi8qyv98er7v.png)
![\sf 2x^2 -6x + 9 = 225](https://img.qammunity.org/2023/formulas/mathematics/high-school/h6uqab1wihw6vnfukqqwpk0w0sf5gv0fb5.png)
![\sf 2x^2 -6x -216=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/65f4cdpl8luqlvtd4rfrofujudwcs23ma9.png)
![\sf 2x^2 -24x +18x -216 = 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/p5ay9qdyneuj4vp6i55ouivo3s22so3kwu.png)
![\sf 2x(x-12)+18(x-12) = 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/kez4qt9d9bxt7223w7c80t2kfi21dzw3nj.png)
![\sf (2x + 18)(x-12) = 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/sx1lc83bdizsda2oh88ipzk6vvux2zjjlm.png)
![\sf x = 12, -9](https://img.qammunity.org/2023/formulas/mathematics/high-school/aqicpd2pk08v56f40dp25fx658szxo0k5n.png)
![\sf x = 12](https://img.qammunity.org/2023/formulas/mathematics/high-school/yzp22s7sd7fqcmc2go1ga8n3yw5gq0cms8.png)
height of the pole: 12 ft
c. How far is the hook from the base of the pole?
solution: (x-3) → (12-3) → 9