169k views
3 votes
9sin(2x)=9cos(x) find x.

1 Answer

4 votes

Answer:


x=(\pi)/(2)+\pi n, (\pi)/(6)+2\pi n, (5\pi)/(6)+2\pi n

Explanation:


9sin(2x)=9cos(x) <-- Starting Equation


9sin(2x)-9cos(x)=0 <-- Move all terms to the left and set equal to 0


9(sin(2x)-cos(x))=0 <--Simplify


9(2sin(x)cos(x)-cos(x))=0 <-- Trig Identity (sin2x=2sinxcosx)


9(cos(x)(2sin(x)-1)=0 <-- Simplify


9cos(x)(2sin(x)-1)=0 <-- Simplify

Use Zero Product Property:


9cos(x)=0 and
2sin(x)-1=0

Use the unit circle to find your solutions:


x=(\pi)/(2)+\pi n, (\pi)/(6)+2\pi n, (5\pi)/(6)+2\pi n

User Orbnexus
by
3.9k points