Use the power, product, and chain rules:
![y = x^2 (3x-1)^3](https://img.qammunity.org/2022/formulas/mathematics/college/u1g6xvz0ek2o77f64baw8xijomsxopxvh1.png)
• product rule
![(\mathrm dy)/(\mathrm dx) = (\mathrm d(x^2))/(\mathrm dx)*(3x-1)^3 + x^2*(\mathrm d(3x-1)^3)/(\mathrm dx)](https://img.qammunity.org/2022/formulas/mathematics/college/6y0y2x2mevem1dcu36oxugtiz2rrr4qyjy.png)
• power rule for the first term, and power/chain rules for the second term:
![(\mathrm dy)/(\mathrm dx) = 2x*(3x-1)^3 + x^2*3(x-1)^2*(\mathrm d(3x-1))/(\mathrm dx)](https://img.qammunity.org/2022/formulas/mathematics/college/pvad15ed54s521xxm1q2kg4t3v9xgb3m7x.png)
• power rule
![(\mathrm dy)/(\mathrm dx) = 2x*(3x-1)^3 + x^2*3(3x-1)^2*3](https://img.qammunity.org/2022/formulas/mathematics/college/ifxs36vujya8b52trxextixflfiyis7lhz.png)
Now simplify.
![(\mathrm dy)/(\mathrm dx) = 2x(3x-1)^3 + 9x^2(3x-1)^2 \\\\ (\mathrm dy)/(\mathrm dx) = x(3x-1)^2 * (2(3x-1) + 9x) \\\\ \boxed{(\mathrm dy)/(\mathrm dx) = x(3x-1)^2(15x-2)}](https://img.qammunity.org/2022/formulas/mathematics/college/pb959wiy40vzg6gt0cl3sjm9k8ymvj33qd.png)
You could also use logarithmic differentiation, which involves taking logarithms of both sides and differentiating with the chain rule.
On the right side, the logarithm of a product can be expanded as a sum of logarithms. Then use other properties of logarithms to simplify
![\ln(y) = \ln\left(x^2(3x-1)^3\right) \\\\ \ln(y) = \ln\left(x^2\right) + \ln\left((3x-1)^3\right) \\\\ \ln(y) = 2\ln(x) + 3\ln(3x-1)](https://img.qammunity.org/2022/formulas/mathematics/college/fwzwgtbjl364eif3ld7xln8vqm3o4qrh12.png)
Differentiate both sides and you end up with the same derivative:
![\frac1y(\mathrm dy)/(\mathrm dx) = \frac2x + \frac9{3x-1} \\\\ \frac1y(\mathrm dy)/(\mathrm dx) = (15x-2)/(x(3x-1)) \\\\ (\mathrm dy)/(\mathrm dx) = (15x-2)/(x(3x-1)) * x^2(3x-1)^3 \\\\ (\mathrm dy)/(\mathrm dx) = x(15x-2)(3x-1)^2](https://img.qammunity.org/2022/formulas/mathematics/college/19nvssmbzv9uler3v50gw6fl85e6v02udz.png)