211k views
2 votes
Can someone pls help

Can someone pls help-example-1

2 Answers

5 votes

Answer:

x = 35

Explanation:

Sum of angles of triangle = 180°

  • 60 + 60 + 4x - 80 = 180
  • 40 + 4x = 180
  • 4x = 140
  • x = 140/4
  • x = 35°
User Mpaton
by
3.5k points
4 votes

❒ Required Solution:

  • We are here to find the three angles with the help of the angle sum property (Sum of the angles of a triangle = 180°). So, using this property we can find all the angles.

❍ According to the question :


\\ \tt \implies \: 60{}^( \circ) + 60{}^( \circ) +(4x - 80) {}^( \circ) = 180{}^( \circ) \\ \\ \\ \implies \tt \: 120{}^( \circ) - 80{}^( \circ) + 4x = 180{}^( \circ) \: \: \: \: \: \: \\ \\ \\ \implies \tt 40{}^( \circ) + 4x = 180{}^( \circ) \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \implies \tt \: 4x = 180{}^( \circ) - 140{}^( \circ) \: \: \: \: \: \: \\ \\ \\ \tt \implies \: 4x = 140{}^( \circ) \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \implies \tt \: x = (140)/(4) \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \tt \implies \: { \boxed{ \mathfrak{ \pmb{ \pink{x = 35}}}}} \bigstar \\ \\ \\

User Triad
by
3.1k points