169k views
21 votes
PLEASE HELP Solve the right triangle.


Round your answers to the nearest tenth.

PLEASE HELP Solve the right triangle. Round your answers to the nearest tenth.-example-1
User Kalos
by
8.1k points

2 Answers

13 votes


\bold{\huge{\underline{ Solution }}}

Let consider the given triangle be ABC

Here, It is given in the question that ,


  • \sf{ {\angle} B = 90° }

  • \sf{ {\angle} C = 50° }

  • \sf{ AC = 14 }

Therefore,

By using Angle sum property

  • It states that the sum of all angles of triangles are equal to 180°

That is,


\bold{\pink{ {\angle} A + {\angle}B + {\angle}C = 180{\degree}}}

Subsitute the required values,


\sf{ {\angle}A + 90{\degree} + 50{\degree}\: =\: 180{\degree} }


\sf{ {\angle}A + 140{\degree}\: = \:180{\degree} }


\sf{ {\angle}A\: = \: 180{\degree} - 140{\degree} }


\sf{ {\angle}A \: =\: 40{\degree} }

Thus, The angle A is 40°

Now,

We have to find the side a and b

We know that,


\bold{\red{ Sin{\theta} \:=\: }}{\bold{\red{(Perpendicular )/(Hypotenuse )}}}


\bold{\red{ Cos{\theta} \:=\: }}{\bold{\red{( Base )/(Hypotenuse )}}}

For side A


\sf{ Sin\: 40 {\degree} \:= \:}{\sf{( a)/( 14 )}}


\sf{ Sin(}{\sf{\frac{2{\pi}}{9}}}{\sf{) \:= \:}}{\sf{( a)/(14 )}}


\sf{Sin(}{\sf{\frac{2{*} 3.14 }{9}}}{\sf{) \:= \:}}{\sf{( a)/(14 )}}


\sf{sin(}{\sf{(6.28)/(9)}}{\sf{) \:=\: }}{\sf{( a)/(14 )}}


\sf{ a \:= \:14 {*} 0.64}


\sf{ a \: = \:14 {*} 0.64}


\bold{ a\: =\: 8.96\: \: or \:\:9\:\: (approx) }

For Side B


\sf{ Sin\: 50 {\degree} = }{\sf{( b )/( 14 )}}


\sf{Sin(}{\sf{\frac{5{\pi}}{18}}}{\sf{)\: =\: }}{\sf{( b)/(14 )}}


\sf{Sin(}{\sf{\frac{5{*} 3.14 }{18}}}{\sf{ ) \: = \:}}{\sf{( b)/(14 )}}


\sf{Sin(}{\sf{(15.7)/(18)}}{\sf{ )\: = \:}}{\sf{( b)/(14 )}}


\sf{ b\: = \:14 {*} 0.76}


\bold{ b\: = \: 10.64\:\: or \:\:10.7\:\: (approx) }

Hence, The value of angle A , side a and b is 40° , 9 and 10.7 .

User Tomloprod
by
8.4k points
2 votes

Answer:

A = 40°

a = 9.0

b = 10.7

Explanation:

The sum of interior angles of a triangle is 180°

⇒ m∠A + 50° + 90° = 180°

⇒ m∠A + 140° = 180°

⇒ m∠A = 180° - 140°

⇒ m∠A = 40°


\mathsf{\cos(\theta)=(adjacent\ side)/(hypotenuse)}

Given:


  • \theta = 50°
  • side adjacent to the angle = a
  • hypotenuse = 14


\implies \mathsf{\cos(50)=(a)/(14)}


\implies \mathsf{a=14\cos(50)}


\implies \mathsf{a=9.0\ (nearest\ tenth)}


\mathsf{\sin(\theta)=(opposite\ side)/(hypotenuse)}

Given:


  • \theta = 50°
  • side opposite to the angle = b
  • hypotenuse = 14


\implies \mathsf{\sin(50)=(b)/(14)}


\implies \mathsf{b=14\sin(50)}


\implies \mathsf{b=10.7\ (nearest\ tenth)}

User Sagarr
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories