169k views
21 votes
PLEASE HELP Solve the right triangle.


Round your answers to the nearest tenth.

PLEASE HELP Solve the right triangle. Round your answers to the nearest tenth.-example-1
User Kalos
by
2.8k points

2 Answers

13 votes


\bold{\huge{\underline{ Solution }}}

Let consider the given triangle be ABC

Here, It is given in the question that ,


  • \sf{ {\angle} B = 90° }

  • \sf{ {\angle} C = 50° }

  • \sf{ AC = 14 }

Therefore,

By using Angle sum property

  • It states that the sum of all angles of triangles are equal to 180°

That is,


\bold{\pink{ {\angle} A + {\angle}B + {\angle}C = 180{\degree}}}

Subsitute the required values,


\sf{ {\angle}A + 90{\degree} + 50{\degree}\: =\: 180{\degree} }


\sf{ {\angle}A + 140{\degree}\: = \:180{\degree} }


\sf{ {\angle}A\: = \: 180{\degree} - 140{\degree} }


\sf{ {\angle}A \: =\: 40{\degree} }

Thus, The angle A is 40°

Now,

We have to find the side a and b

We know that,


\bold{\red{ Sin{\theta} \:=\: }}{\bold{\red{(Perpendicular )/(Hypotenuse )}}}


\bold{\red{ Cos{\theta} \:=\: }}{\bold{\red{( Base )/(Hypotenuse )}}}

For side A


\sf{ Sin\: 40 {\degree} \:= \:}{\sf{( a)/( 14 )}}


\sf{ Sin(}{\sf{\frac{2{\pi}}{9}}}{\sf{) \:= \:}}{\sf{( a)/(14 )}}


\sf{Sin(}{\sf{\frac{2{*} 3.14 }{9}}}{\sf{) \:= \:}}{\sf{( a)/(14 )}}


\sf{sin(}{\sf{(6.28)/(9)}}{\sf{) \:=\: }}{\sf{( a)/(14 )}}


\sf{ a \:= \:14 {*} 0.64}


\sf{ a \: = \:14 {*} 0.64}


\bold{ a\: =\: 8.96\: \: or \:\:9\:\: (approx) }

For Side B


\sf{ Sin\: 50 {\degree} = }{\sf{( b )/( 14 )}}


\sf{Sin(}{\sf{\frac{5{\pi}}{18}}}{\sf{)\: =\: }}{\sf{( b)/(14 )}}


\sf{Sin(}{\sf{\frac{5{*} 3.14 }{18}}}{\sf{ ) \: = \:}}{\sf{( b)/(14 )}}


\sf{Sin(}{\sf{(15.7)/(18)}}{\sf{ )\: = \:}}{\sf{( b)/(14 )}}


\sf{ b\: = \:14 {*} 0.76}


\bold{ b\: = \: 10.64\:\: or \:\:10.7\:\: (approx) }

Hence, The value of angle A , side a and b is 40° , 9 and 10.7 .

User Tomloprod
by
3.3k points
2 votes

Answer:

A = 40°

a = 9.0

b = 10.7

Explanation:

The sum of interior angles of a triangle is 180°

⇒ m∠A + 50° + 90° = 180°

⇒ m∠A + 140° = 180°

⇒ m∠A = 180° - 140°

⇒ m∠A = 40°


\mathsf{\cos(\theta)=(adjacent\ side)/(hypotenuse)}

Given:


  • \theta = 50°
  • side adjacent to the angle = a
  • hypotenuse = 14


\implies \mathsf{\cos(50)=(a)/(14)}


\implies \mathsf{a=14\cos(50)}


\implies \mathsf{a=9.0\ (nearest\ tenth)}


\mathsf{\sin(\theta)=(opposite\ side)/(hypotenuse)}

Given:


  • \theta = 50°
  • side opposite to the angle = b
  • hypotenuse = 14


\implies \mathsf{\sin(50)=(b)/(14)}


\implies \mathsf{b=14\sin(50)}


\implies \mathsf{b=10.7\ (nearest\ tenth)}

User Sagarr
by
3.1k points