![\bold{\huge{\underline{ Solution }}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jdi2w7914cic76zpb2xuxp7e51pz44d9g8.png)
Let consider the given triangle be ABC
Here, It is given in the question that ,
Therefore,
By using Angle sum property
- It states that the sum of all angles of triangles are equal to 180°
That is,
![\bold{\pink{ {\angle} A + {\angle}B + {\angle}C = 180{\degree}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/2zdeuwj3b04c5cjsbr93nu8xlfw84nfmiw.png)
Subsitute the required values,
![\sf{ {\angle}A + 90{\degree} + 50{\degree}\: =\: 180{\degree} }](https://img.qammunity.org/2023/formulas/mathematics/high-school/zf55chzuv40pqmgsb3obnp8uznafd4yltc.png)
![\sf{ {\angle}A + 140{\degree}\: = \:180{\degree} }](https://img.qammunity.org/2023/formulas/mathematics/high-school/goozts0wr4lphn9a5q3ytgyv92fbr2miem.png)
![\sf{ {\angle}A\: = \: 180{\degree} - 140{\degree} }](https://img.qammunity.org/2023/formulas/mathematics/high-school/ojfirrlun4mul0vltrpwzuzz50kte9kefu.png)
![\sf{ {\angle}A \: =\: 40{\degree} }](https://img.qammunity.org/2023/formulas/mathematics/high-school/8en0c6w6gl0lsr8ywyv66pf5b0dwntwdg5.png)
Thus, The angle A is 40°
Now,
We have to find the side a and b
We know that,
![\bold{\red{ Sin{\theta} \:=\: }}{\bold{\red{(Perpendicular )/(Hypotenuse )}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ug56sgvqayvig6cj7vwisdc9xve45c8ezv.png)
![\bold{\red{ Cos{\theta} \:=\: }}{\bold{\red{( Base )/(Hypotenuse )}}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/nu8v4qwx6irprs6jzl2sabnkovzsd6flb4.png)
For side A
![\sf{ Sin\: 40 {\degree} \:= \:}{\sf{( a)/( 14 )}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/iknpl8tubrqupas2id4nddf5dhne70wqjx.png)
![\sf{ Sin(}{\sf{\frac{2{\pi}}{9}}}{\sf{) \:= \:}}{\sf{( a)/(14 )}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/fd1g2w79n4ip8t1f334ql05xob1zxfhln8.png)
![\sf{Sin(}{\sf{\frac{2{*} 3.14 }{9}}}{\sf{) \:= \:}}{\sf{( a)/(14 )}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/zb5kfsr2wwqurit324c22hr8eeeq5jt7nj.png)
![\sf{sin(}{\sf{(6.28)/(9)}}{\sf{) \:=\: }}{\sf{( a)/(14 )}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/f23v3aykgthdaqlvrnt67kgmy5kxt18tfy.png)
For Side B
![\sf{ Sin\: 50 {\degree} = }{\sf{( b )/( 14 )}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/430qtrm7bhzi8eathpu0pr2aw1essizw8l.png)
![\sf{Sin(}{\sf{\frac{5{\pi}}{18}}}{\sf{)\: =\: }}{\sf{( b)/(14 )}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/u0luomcimrepqfwhr77ea4r23zwxei5d12.png)
![\sf{Sin(}{\sf{\frac{5{*} 3.14 }{18}}}{\sf{ ) \: = \:}}{\sf{( b)/(14 )}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/np6jolmmk6jm9s2bkfcknfw7s2jhyeltay.png)
![\sf{Sin(}{\sf{(15.7)/(18)}}{\sf{ )\: = \:}}{\sf{( b)/(14 )}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ukzncjr7t46bypyyukijjx6m3lflyg1st9.png)
Hence, The value of angle A , side a and b is 40° , 9 and 10.7 .