9.2k views
4 votes
Obtain the backward difference for the function f(x) =x^3 from x=1 to 1.05​

1 Answer

1 vote

We have to find integration of f(x) having upper limit 1.05 and lower limit 1


\\ \rm\longmapsto \displaystyle{\int^(1.05)_1}x^3dx


\\ \rm\longmapsto \left[(3x^(3+1))/(3+1)\right]^(1.05)_1


\\ \rm\longmapsto \left[(3x^4)/(4)\right]^(1.05)_1


\\ \rm\longmapsto (3(1.05)^4-3(1)^4)/(4)


\\ \rm\longmapsto (3(1.2)-3(1))/(4)


\\ \rm\longmapsto (3.6-3)/(4)


\\ \rm\longmapsto (0.6)/(4)


\\ \rm\longmapsto 2.4

User MSR
by
4.7k points