9.2k views
4 votes
Obtain the backward difference for the function f(x) =x^3 from x=1 to 1.05​

1 Answer

1 vote

We have to find integration of f(x) having upper limit 1.05 and lower limit 1


\\ \rm\longmapsto \displaystyle{\int^(1.05)_1}x^3dx


\\ \rm\longmapsto \left[(3x^(3+1))/(3+1)\right]^(1.05)_1


\\ \rm\longmapsto \left[(3x^4)/(4)\right]^(1.05)_1


\\ \rm\longmapsto (3(1.05)^4-3(1)^4)/(4)


\\ \rm\longmapsto (3(1.2)-3(1))/(4)


\\ \rm\longmapsto (3.6-3)/(4)


\\ \rm\longmapsto (0.6)/(4)


\\ \rm\longmapsto 2.4

User MSR
by
7.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories