Differentiate both sides with respect to x and solve for the derivative dy/dx :
![(\mathrm d)/(\mathrm dx)\left[x^2y^2+xy\right] = (\mathrm d)/(\mathrm dx)[2] \\\\ (\mathrm d)/(\mathrm dx)\left[x^2\right]y^2 + x^2(\mathrm d)/(\mathrm dx)\left[y^2\right] + (\mathrm d)/(\mathrm dx)\left[x\right]y + x(\mathrm dy)/(\mathrm dx) = 0 \\\\ 2xy^2 + x^2(2y)(\mathrm dy)/(\mathrm dx) + y + x(\mathrm dy)/(\mathrm dx) = 0 \\\\ (2x^2y+x)(\mathrm dy)/(\mathrm dx) = -2xy^2-y \\\\ (\mathrm dy)/(\mathrm dx) = -(2xy^2+y)/(2x^2y+x)](https://img.qammunity.org/2022/formulas/mathematics/college/5pwrc6227hq3snxv3it1kvql5v1ceysz4z.png)
This gives the slope of the tangent to the curve at the point (x, y).
If the slope of some tangent line is -1, then
![-(2xy^2+y)/(2x^2y+x) = -1 \\\\ (2xy^2+y)/(2x^2y+x) = 1 \\\\ 2xy^2+y = 2x^2y+x \\\\ 2xy^2-2x^2y + y - x = 0 \\\\ 2xy(y-x)+y-x = 0 \\\\ (2xy+1)(y-x) = 0](https://img.qammunity.org/2022/formulas/mathematics/college/g85u7yk77965bi4estqu87zh66gt3lccay.png)
Then either
![2xy+1 = 0\text{ or }y-x=0 \\\\ \implies y=-\frac1{2x} \text{ or }y=x](https://img.qammunity.org/2022/formulas/mathematics/college/r61g4w85k0hs3xw7qr7m7k9g4errrv28rh.png)
In the first case, we'd have
![x^2\left(-\frac1{2x}\right)^2+x\left(-\frac1{2x}\right) = \frac14-\frac12 = -\frac14\\eq2](https://img.qammunity.org/2022/formulas/mathematics/college/l2mxddg9vuqvghx6c1bu7tbsivjl81sunr.png)
so this case is junk.
In the second case,
![x^2* x^2+x* x=x^4+x^2=2 \\\\ x^4+x^2-2 = (x^2-1)(x^2+2)=0](https://img.qammunity.org/2022/formulas/mathematics/college/ywgyyiysbzjxq4uxtg83t03dbfy9k1abrz.png)
which means either
![x^2-1 = 0 \text{ or }x^2+2 = 0 \\\\ x^2 = 1 \text{ or }x^2 = - 2](https://img.qammunity.org/2022/formulas/mathematics/college/k5tn8vbxzjrhbk23sfw97s3b9n2f7wir3g.png)
The second case here leads to non-real solutions, so we ignore it. The other case leads to
.
Find the y-coordinates of the points with x = ±1 :
![x=1 \implies y^2+y=2 \implies y=-2 \text{ or }y=1 \\\\ x=-1\implies y^2-y=2\implies y=-1\text{ or }y=2](https://img.qammunity.org/2022/formulas/mathematics/college/5uvx2pkkfqiwotbpxvlp7uhfz2m2trkrvk.png)
so the points of interest are (1, -2), (1, 1), (-1, -1), and (-1, 2).