Answer:
![\boxed {\boxed {\sf ( -9, (11)/(2)) }}](https://img.qammunity.org/2022/formulas/mathematics/college/6znmb7la5zm8qrdnltl67p8jrgywqjgz46.png)
Explanation:
We are asked to find the midpoint of a segment. We essentially calculate the average of the x-coordinates and the y-coordinates using the following formula.
![( \frac {x_1+x_2}{2}, ( y_1 + y_2)/(2))](https://img.qammunity.org/2022/formulas/mathematics/college/e9fm0zz9he2y2rri0kzztzir9g0xwf7qxj.png)
In this formula, (x₁ , y₁) and (x₂ , y₂) are the endpoints of the segment. For this problem, the 2 endpoints are (-12, 12) and (-6, -1). If we match the variable and the corresponding value, we see that:
- x₁= -12
- y₁= 12
- x₂ = -6
- y₂ = -1
Substitute the values into the formula.
![( (-12 + -6)/(2), \frac{12 + -1} {2} )](https://img.qammunity.org/2022/formulas/mathematics/college/iacxcbvayvpqq6kyrroz1cfgz3yl0svr3h.png)
Solve the numerators.
- -12 + -6 = -12 -6 = -18
- 12 + -1 = 12-1 = 11
![( (-18)/(2), (11)/(2))](https://img.qammunity.org/2022/formulas/mathematics/college/xm4hdgzoum0isptihjrwhfw2bwkaozq0q6.png)
Divide.
![( -9, (11)/(2) )](https://img.qammunity.org/2022/formulas/mathematics/college/zetu9txljb11kfbc0ml9p5qrq9k2aet6p8.png)
The midpoint of the segment is
.