155k views
2 votes
Show that:

a) The 2nd differences in the following row are constant and calculate:
b)Tn
4; 7; 12; 19;....
-1; 2; 7; 14;....
-2;-8; -18; -32; ...​

User Matt Borja
by
7.6k points

2 Answers

3 votes

Answer:

Hello,

Explanation:

I am going to explain the method with the 1th:


\begin{array}{ccccc}n & u_n&u_(n+1)-u_(n)&u_(n+2)-2u_(n+1)+u_(n)&v_(n)\\1&4&&6\\2&7&3&9\\3&12&5&2&14\\4&19&7&2&21\\...&&&\\\end{array}\\\boxed{u_(n+2)=2u_(n+1)-u_(n)+2}\\


Let\ say\\v_(n)=u_(n)+2\\v_(n+2)=u_(n+2)+2=(2u_(n+1)-u_(n)+2)+2=2(v_(n+1)-2)-(v{n}-2)+4\\v_(n+2)=2v_(n+1)-v{n}+2\ (1)\\v_(n+3)=2v_(n+2)-v{n+1}+2\ (2)\\(2)-(1)==> \boxed{v_(n+3)=3v_(n+2)-3v_(n+1)+v_n}\\


Caracteristic\ equation:\\P(r)=r^3-3r^2+3r-1=0\\P(r)=(r-1)^3\\v_n=\alpha+\beta*n+\gamma*n^2\\v_1=6 ==> \alpha+\beta*1+\gamma*1=6\\u_2=9 ==> \alpha+\beta*2+\gamma*4=9\\u_3=14 ==> \alpha+\beta*3+\gamma*9=14\\


\begin{bmatrix}1&1&1\\1&2&4\\1&3&9\end{bmatrix}*\begin{bmatrix}\alpha\\\beta\\\gamma\end{bmatrix}=\begin{bmatrix}6\\9\\14 \end{bmatrix}\\\\\\\begin{bmatrix}1&1&1&6\\1&2&4&9\\1&3&9&14\end{bmatrix}\\\\\\\begin{bmatrix}1&1&1&6\\0&2&3&3\\0&2&8&8\end{bmatrix}\\\\\\\begin{bmatrix}1&1&1&6\\0&1&3&3\\0&1&4&4\end{bmatrix}\\\\


\begin{bmatrix}1&1&1&6\\0&1&3&3\\0&0&1&1\end{bmatrix}\\\\\\\begin{bmatrix}1&1&1&6\\0&1&0&0\\0&0&1&1\end{bmatrix}\\\\\\\begin{bmatrix}1&0&0&5\\0&1&0&0\\0&0&1&1\end{bmatrix}\\


\alpha=5\\\beta=0\\\gamma=1\\\boxed{v_n=5+0*n+1*n^2}\\\boxed{u_n=5+0*n+1*n^2-2}\\\begin{array}{ccccc}n & u_n\\1&5+1-2=4\\2&5+4-2=7\\3&5+9-2=12\\4&5+16-2=19\\...&...\\\end{array}\\

User David Kolar
by
8.0k points
5 votes

• {4, 7, 12, 19, … }

has 1st differences

7 - 4 = 3

12 - 7 = 5

19 - 12 = 7

and 2nd differences

5 - 3 = 2

7 - 5 = 2

• {-1, 2, 7, 14, …}

1st differences:

2 - (-1) = 3

7 - 2 = 5

14 - 7 = 7

2nd differences:

5 - 3 = 2

7 - 5 = 2

• {-2, -8, -18, -32, …}

1st differences:

-8 - (-2) = -6

-18 - (-8) = -10

-32 - (-18) = -14

2nd differences:

-10 - (-6) = -4

-14 - (-10) = -4

User Handicop
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories