44.1k views
0 votes
If a, b, c are in A.P. show that
a (b + c)/bc,b(c + a) /ca, c(a-b )/bc
are in A.P.


User Gearhead
by
7.3k points

1 Answer

5 votes

Answer:

Explanation:


(a(b+c))/(bc) ,(b(c+a))/(ca) ,(c(a+b))/(ab) ~are~in~A.P.\\if~(ab+ca)/(bc) ,(bc+ab)/(ca) ,(ca+bc)/(ab) ~are~in~A.P.\\add~1~to~each~term\\if~(ab+ca)/(bc) +1,(bc+ab)/(ca) +1,(ca+bc)/(ab) +1~are~in~A.P.\\if~(ab+ca+bc)/(bc) ,(bc+ab+ca)/(ca) ,(ca+bc+ab\\)/(ab) ~are~in~A.P.\\\\divide~each~by~ab+bc+ca\\if~(1)/(bc) ,(1)/(ca) ,(1)/(ab) ~are ~in~A.P.\\if~(a)/(abc) ,(b)/(abc) ,(c)/(abc) ~are~in~A.P.\\if~a,b,c~are~in~A.P.\\which~is~true.

User Sam Mackrill
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories