Answer:
The point (11, 5) is NOT on the parabola.
Explanation:
Let
be any point on the parabola
Let
be the focus
Let
be the the directrix
Distance between
and the focus:
![√((x_0-a)^2+(y_0-b)^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/sowtpjn9o7pi19tgyo9qbrwdli051by4uf.png)
Distance between
and the directrix is
![|y_0-c|](https://img.qammunity.org/2023/formulas/mathematics/high-school/kr01u4epfib0l4619dw2m34cy0j9wnwsxm.png)
Given:
- focus (6, 4)
- directrix y = 0
Therefore:
Distance between
and the focus:
![√((x_0-6)^2+(y_0-4)^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/qbb7c6ac7hh432y55kdkta52l31dhdoe1h.png)
Distance between
and the directrix is
![|y_0-0|](https://img.qammunity.org/2023/formulas/mathematics/high-school/ay3c176hle9r3qcceuu8jncbqmsk0ryi86.png)
Equate the two expressions and solve for
:
![√((x_0-6)^2+(y_0-4)^2)=|y_0-0|](https://img.qammunity.org/2023/formulas/mathematics/high-school/lubzsfafleljwm4qlktiytze403o63nk8q.png)
![\implies (x_0-6)^2+(y_0-4)^}=(y_0-0)^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/dhbhbqb3hrunix59c00wve2tkivxmzqben.png)
![\implies {x_0}^2-12x_0+36+{y_0}^2-8y_0+16={y_0}^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/u7ss7sx7oijtt0p2onvn0qdh38l06k48b6.png)
![\implies {x_0}^2-12x_0-8y_0+52=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/qwbjthor2yckab8i3ufmtnw308fs3rb5st.png)
![\implies 8y_0={x_0}^2-12x_0+52](https://img.qammunity.org/2023/formulas/mathematics/high-school/g0gmeo2xjfg0p49br5pbvbkmnrxnd1ctvp.png)
![\implies y_0=\frac18{x_0}^2-(12)/(8)x_0+(52)/(8)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ksq5sb9kjuu4us5pa5rdkfzl8wuuhoejfg.png)
![\implies y_0=\frac18{x_0}^2-\frac32x_0+(13)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/vmrse2ss4d5mvp9urckhmuefvuzpibpcha.png)
Now rewrite with (x, y):
![\implies y=\frac18x^2-\frac32x+(13)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/kw1aglsxwmzeqoby2mveyugads7hggcy4c.png)
Therefore, this is the equation of the parabola
To determine if the point (11, 5) is on the parabola, input x = 11 into the equation:
![\implies y=\frac18(11)^2-\frac32(11)+(13)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/69ph4xt51xcy8krs6kbieos82ec4q2dr44.png)
![\implies y=(41)/(8)](https://img.qammunity.org/2023/formulas/mathematics/high-school/mi1m6z5c6cl7kxx3smdl7u9acr5nnu1idg.png)
So the point (11, 5) is NOT on the parabola.