166k views
5 votes
A number is equal to twice a smaller number plus 3. The same number is equal to twice the sum of the smaller number and 1. How many solutions are possible for this situation?

* Infinitely many solutions exist because the two situations describe the same line.
* Exactly one solution exists because the situation describes two lines that have different slopes and different y-intercepts.
* No solutions exist because the situation describes two lines that have the same slope and different y-intercepts.
* Exactly one solution exists because the situation describes two lines with different slopes and the same y-intercept.

1 Answer

0 votes

Answer:

There is no solution to this.

Explanation :

We have a double system of equation to solve. Let x be the big number and let y be the smaller number, such that y < x.

x is equal to twice a smaller number plus 3, which translates into : x = 2y + 3

and x is equal to twice the sum of the smaller number and 1 : x = 2 * (y + 1)

We get this system to solve :
\left \{{{x=2y+3} \atop {x=2(y+1)}} \right. \left \{{{x-2y=3} \atop {x-2y=2}} \right.

It's either x minus 2y equals 3, or x minus 2y = 2 but it can't be both. No solutions exist because the situation describes two lines that have the same slope and different y-intercepts

User Juan Antonio
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories