Answer:
A)
![k=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/11b1zeh8rn22jisspoec1yg6l5pfeqtfu0.png)
B)
![\displaystyle \begin{aligned} 2k + 1& = 2\ln 20 + 1 \\ &\approx 2.3863\end{aligned}](https://img.qammunity.org/2022/formulas/mathematics/college/13dn9csmcdajtsirjxst9p4s8h9245dhvg.png)
C)
![\displaystyle \begin{aligned} k - 3&= \ln (1)/(2) - 3 \\ &\approx-3.6931 \end{aligned}](https://img.qammunity.org/2022/formulas/mathematics/college/uoek2atpkzyvypgwys3iw0ugppioi6ow62.png)
Explanation:
We are given the function:
![\displaystyle h(x) = 20e^(kx) \text{ where } k \in \mathbb{R}](https://img.qammunity.org/2022/formulas/mathematics/college/rns5e5fzs2cersgrs8vjnnwxjotna7tlwq.png)
A)
Given that h(1) = 20, we want to find k.
h(1) = 20 means that h(x) = 20 when x = 1. Substitute:
![\displaystyle (20) = 20e^(k(1))](https://img.qammunity.org/2022/formulas/mathematics/college/jbmv2wrxns49id4rnbr2hgjb29pc0474lh.png)
Simplify:
![1= e^k](https://img.qammunity.org/2022/formulas/mathematics/college/o62antyw9bdwjblqvgl99f65xyyzt6vtbx.png)
Anything raised to zero (except for zero) is one. Therefore:
![k=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/11b1zeh8rn22jisspoec1yg6l5pfeqtfu0.png)
B)
Given that h(1) = 40, we want to find 2k + 1.
Likewise, this means that h(x) = 40 when x = 1. Substitute:
![\displaystyle (40) = 20e^(k(1))](https://img.qammunity.org/2022/formulas/mathematics/college/vo356kwx7cyoq03p1iyt9hel3oi92tn8fd.png)
Simplify:
![\displaystyle 2 = e^(k)](https://img.qammunity.org/2022/formulas/mathematics/college/40uuqylrm5rsyn4bl6tds50pb0iepn9fo6.png)
We can take the natural log of both sides:
![\displaystyle \ln 2 = \underbrace{k\ln e}_(\ln a^b = b\ln a)](https://img.qammunity.org/2022/formulas/mathematics/college/1vnvlxx1cncdxa2v3mmjwi900m7hscwtvq.png)
By definition, ln(e) = 1. Hence:
![\displaystyle k = \ln 2](https://img.qammunity.org/2022/formulas/mathematics/college/kwwnq536n5rfaafp27d7q1xzeur65cjsfx.png)
Therefore:
![2k+1 = 2\ln 2+ 1 \approx 2.3863](https://img.qammunity.org/2022/formulas/mathematics/college/yvmn4gnhbehqeh83t1ztou870muscv4o8o.png)
C)
Given that h(1) = 10, we want to find k - 3.
Again, this meas that h(x) = 10 when x = 1. Substitute:
![\displaystyle (10) = 20e^(k(1))](https://img.qammunity.org/2022/formulas/mathematics/college/ue7ppajh4ij7930dweahu9o5uan6dmqaho.png)
Simplfy:
![\displaystyle (1)/(2) = e^k](https://img.qammunity.org/2022/formulas/mathematics/college/luikqonzjg5rjt13742xro3ww82xk250bp.png)
Take the natural log of both sides:
![\displaystyle \ln (1)/(2) = k\ln e](https://img.qammunity.org/2022/formulas/mathematics/college/arlizk3bwha2oo9pyijwosl1tmig7hq4oe.png)
Therefore:
![\displaystyle k = \ln (1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/104lz7hd2vuiya9he6z5cxdh08r7ymsfer.png)
Therefore:
![\displaystyle k - 3 = \ln(1)/(2) - 3\approx-3.6931](https://img.qammunity.org/2022/formulas/mathematics/college/6i6vtb398fhoym3bl1upcz01nomu6zainp.png)