135k views
0 votes
Find the general solution for:-


sin\:x \:cos\: 3x+cos\:x\: sin\:3x=tan140


~Please show your work
~Thank you!

User Joensson
by
8.0k points

1 Answer

0 votes

Answer:


\rm \displaystyle x \approx \bigg \{ {59.3}^( \circ) + (n\pi)/(2) , - {14.3}^( \circ) + (n\pi)/(2) \bigg \}

Explanation:

we would like to solve the following trigonometric equation:


\rm \displaystyle \sin(x) \cos(3x) + \cos(x) \sin(3x) = \tan( {140}^( \circ) )

the left hand side can be rewritten using angle sum indentity of sin which is given by:


\rm \displaystyle \sin( \alpha + \beta ) = \sin( \alpha ) \cos( \beta ) + \cos( \alpha ) \sin( \beta )

therefore Let


  • \alpha = x

  • \beta = 3x

Thus substitute:


\rm \displaystyle \sin(x + 3x) = \tan( {140}^( \circ) )

simplify addition:


\rm \displaystyle \sin(4x) = \tan( {140}^( \circ) )

keep in mind that sin(t)=sin(π-t) saying that there're two equation to solve:


\begin{cases} \rm \displaystyle \sin(4x) = \tan( {140}^( \circ) ) \\ \\ \displaystyle \sin(\pi - 4x) = \tan( {140}^( \circ) ) \end{cases}

take inverse trig and that yields:


\begin{cases} \rm \displaystyle 4x= { \sin}^( - 1) ( \tan( {140}^( \circ) ) ) \\ \\ \displaystyle \pi - 4x = { \sin}^( - 1)( \tan( {140}^( \circ) ) ) \end{cases}

add π to both sides of the second equation and that yields:


\begin{cases} \rm \displaystyle 4x= { \sin}^( - 1) ( \tan( {140}^( \circ) ) ) \\ \\ \displaystyle - 4x = { \sin}^( - 1)( \tan( {140}^( \circ) ) ) + \pi\end{cases}

sin function has a period of 2nπ thus add the period:


\begin{cases} \rm \displaystyle 4x= { \sin}^( - 1) ( \tan( {140}^( \circ) ) ) + 2n\pi\\ \\ \displaystyle - 4x = { \sin}^( - 1)( \tan( {140}^( \circ) ) ) + \pi + 2n\pi\end{cases}

divide I equation by 4 and II by -4 which yields:


\begin{cases} \rm \displaystyle x= \frac{ { \sin}^( - 1) ( \tan( {140}^( \circ) ) ) }{4} + (n\pi)/(2) \\ \\ \displaystyle x = - \frac{{ \sin}^( - 1)( \tan( {140}^( \circ) ) ) + \pi}{4} - (n\pi)/(2) \end{cases}

recall that,-½(nπ)=½(nπ) therefore,


\begin{cases} \rm \displaystyle x= \frac{ { \sin}^( - 1) ( \tan( {140}^( \circ) ) ) }{4} + (n\pi)/(2) \\ \\ \displaystyle x = - \frac{{ \sin}^( - 1)( \tan( {140}^( \circ) ) ) + \pi}{4} + (n\pi)/(2) \end{cases}

by using a calculator we acquire:


\begin{cases} \rm \displaystyle x \approx - {14.3}^( \circ) + (n\pi)/(2) \\ \\ \displaystyle x \approx {59.3}^( \circ) + (n\pi)/(2) \end{cases}

hence,

the general solution for: for the trig equation are


\rm \displaystyle x \approx \bigg \{ {59.3}^( \circ) + (n\pi)/(2) , - {14.3}^( \circ) + (n\pi)/(2) \bigg \}

User RootTwo
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories