210k views
4 votes
If sum of first 6 digits of AP is 36 and that of the first 16 terms is 255,then find the sum of first ten terms.

•Please answer it correctly ( step by step)


User Oeste
by
7.8k points

2 Answers

0 votes

Answer:

100

Explanation:

We have the sum of first n terms of an AP,

Sn = n/2 [2a+(n−1)d]

Given,

36= 6/2 [2a+(6−1)d]

12=2a+5d ---------(1)

256= 16/2 [2a+(16−1)d]

32=2a+15d ---------(2)

Subtracting, (1) from (2)

32−12=2a+15d−(2a+5d)

20=10d ⟹d=2

Substituting for d in (1),

12=2a+5(2)=2(a+5)

6=a+5 ⟹a=1

∴ The sum of first 10 terms of an AP,

S10 = 10/2 [2(1)+(10−1)2]

S10 =5[2+18]

S10 =100

This is the sum of the first 10 terms.

Hope it will help.

User Ojas Kale
by
7.3k points
3 votes


\sf\underline{\underline{Question:}}

If sum of first 6 digits of AP is 36 and that of the first 16 terms is 255,then find the sum of first ten terms.

$\sf\underline{\underline{Solution:}}$

  • $\sf\bold\purple$

$\space$

$\sf\underline\bold\red$

$\sf\bold{Given:}$

  • $\sf\bold{S6=36}$
  • $\sf\bold{S16=255}$

$\space$

$\sf\bold{To\:find:}$

  • $\sf\bold{The \: sum\:of\:the\:first\:ten\:numbers}$

$\space$

$\sf\bold{Formula\:we\:are\:using:}$

$\implies$ $\sf{ Sn=}$ $\sf\dfrac{N}{2}$ $\sf\small{[2a+(n-1)d]}$

$\space$

$\sf\bold{Substituting\:the\:values:}$

→ $\sf{S6=}$ $\sf\dfrac{6}{2}$ $\sf\small{[2a+(6-1)d]}$

→ $\sf{36 = 3[2a+(6-1)d]}$

→$\sf{12=[2a+5d]}$ $\sf\bold\purple{(First \: equation)}$

$\space$

$\sf\bold{Again,Substituting \: the\:values:}$

→ $\sf{S16}$ $\sf\dfrac{16}{2}$ $\sf\small{[2a+(16-1)d]}$

→ $\sf{255=8[2a + (16-1)d]}$

:: $\sf\dfrac{255}{8}$ $\sf\small{=31.89=32}$

→ $\sf{32=[2a+15d]}$ $\sf\bold\purple{(Second\:equation)}$

$\space$

$\sf\bold{Now,Solve \: equation \: 1 \:and \:2:}$

→ $\sf{10=20}$

→ $\sf{d=}$ $\sf\dfrac{20}{10}$ $\sf{=2}$

$\space$

$\sf\bold{Putting \: d=2\: in \:equation - 1:}$

→ $\sf{12=2a+5\times 2}$

→ $\sf{a = 1}$

$\space$

$\sf\bold{All\:of\:the\:above\:eq\: In \: S10\:formula:}$

$\mapsto$ $\sf{S10=}$ $\sf\dfrac{10}{2}$ $\sf\small{[2\times1+(10-1)d]}$

$\mapsto$ $\sf{5(2\times1+9\times2)}$

$\mapsto$ $\sf\bold\purple{5(2+18)=100}$

$\space$

$\sf\small\red$

_____________________________

User Yaser Darzi
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories