219k views
0 votes
Write in slope intercept form an equation of the line that passes through the given points (-3,1) (0,4)

2 Answers

0 votes


(\stackrel{x_1}{-3}~,~\stackrel{y_1}{1})\qquad (\stackrel{x_2}{0}~,~\stackrel{y_2}{4}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{4}-\stackrel{y1}{1}}}{\underset{run} {\underset{x_2}{0}-\underset{x_1}{(-3)}}}\implies \cfrac{3}{0+3}\implies \cfrac{3}{3}\implies 1


\begin{array}ll \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{1}=\stackrel{m}{1}(x-\stackrel{x_1}{(-3)}) \\\\\\ y-1=x+3\implies y=x+4

User Andy Danger Gagne
by
5.3k points
10 votes

Answer:

y = x + 4

Explanation:

The slope


m=(4-1)/(0+3) =(3)/(3)=1

The equation: with point (0, 4)


y-4=1(x-0)


y-4=x-0


y-4=x


y=x+4

Hope this helps

User Pm Dubey
by
5.3k points