83.6k views
3 votes
Find y' for the following. ​

Find y' for the following. ​-example-1

1 Answer

0 votes

Answer:


\displaystyle y' = \frac{√(y) + y}{4√(x)y \Big( y^\Big{(3)/(2)} + √(y) + 2y \Big) + √(x) + x}

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:
\displaystyle (d)/(dx) [(f(x))/(g(x)) ]=(g(x)f'(x)-g'(x)f(x))/(g^2(x))

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Implicit Differentiation

Explanation:

Step 1: Define

Identify


\displaystyle (√(x) + 1)/(√(y) + 1) = y^2

Step 2: Differentiate

  1. Implicit Differentiation:
    \displaystyle (dy)/(dx) \bigg[ (√(x) + 1)/(√(y) + 1) \bigg] = (dy)/(dx)[ y^2]
  2. Quotient Rule:
    \displaystyle ((√(x) + 1)'(√(y) + 1) - (√(y) + 1)'(√(x) + 1))/((√(y) + 1)^2) = (dy)/(dx)[ y^2]
  3. Rewrite:
    \displaystyle \frac{(x^\Big{(1)/(2)} + 1)'(y^\Big{(1)/(2)} + 1) - (y^\Big{(1)/(2)} + 1)'(x^\Big{(1)/(2)} + 1)}{(y^\Big{(1)/(2)} + 1)^2} = (dy)/(dx)[ y^2]
  4. Basic Power Rule [Addition/Subtraction, Chain Rule]:
    \displaystyle \frac{(1)/(2)x^\Big{(-1)/(2)}(y^\Big{(1)/(2)} + 1) - (1)/(2)y^\Big{(-1)/(2)}y'(x^\Big{(1)/(2)} + 1)}{(y^\Big{(1)/(2)} + 1)^2} = 2yy'
  5. Factor:
    \displaystyle \frac{(1)/(2) \bigg[ x^\Big{(-1)/(2)}(y^\Big{(1)/(2)} + 1) - y^\Big{(-1)/(2)}y'(x^\Big{(1)/(2)} + 1) \bigg] }{(y^\Big{(1)/(2)} + 1)^2} = 2yy'
  6. Rewrite:
    \displaystyle \frac{x^\Big{(-1)/(2)}(y^\Big{(1)/(2)} + 1) - y^\Big{(-1)/(2)}y'(x^\Big{(1)/(2)} + 1)}{2(y^\Big{(1)/(2)} + 1)^2} = 2yy'
  7. Rewrite:
    \displaystyle x^\Big{(-1)/(2)}(y^\Big{(1)/(2)} + 1) - y^\Big{(-1)/(2)}y'(x^\Big{(1)/(2)} + 1)}= 4yy'(y^\Big{(1)/(2)} + 1)^2
  8. Isolate y' terms:
    \displaystyle x^\Big{(-1)/(2)}(y^\Big{(1)/(2)} + 1) = 4yy'(y^\Big{(1)/(2)} + 1)^2 + y^\Big{(-1)/(2)}y'(x^\Big{(1)/(2)} + 1)}
  9. Factor:
    \displaystyle x^\Big{(-1)/(2)}(y^\Big{(1)/(2)} + 1) = y' \bigg[ 4y(y^\Big{(1)/(2)} + 1)^2 + y^\Big{(-1)/(2)}(x^\Big{(1)/(2)} + 1)} \bigg]
  10. Isolate y':
    \displaystyle \frac{x^\Big{(-1)/(2)}(y^\Big{(1)/(2)} + 1)}{4y(y^\Big{(1)/(2)} + 1)^2 + y^\Big{(-1)/(2)}(x^\Big{(1)/(2)} + 1)} = y'
  11. Rewrite/Simplify:
    \displaystyle y' = \frac{√(y) + y}{4√(x)y \Big( y^\Big{(3)/(2)} + √(y) + 2y \Big) + √(x) + x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

User Brianegge
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories