1.2k views
12 votes
Find the center radius form for each circle having the given endpoints of a diameter.

22. (-4,5) and (6,-9)

26. ( 0,9) and (0,-9)

1 Answer

8 votes

Answer:

22.
(x-1)^2+(y+2)^2=74

26.
x^2+y^2=81

Explanation:

The center of a circle is the midpoint of the diameter.


\textsf{midpoint}=\left((x_1+x_2)/(2),(y_1+y_2)/(2)\right)

(where
(x_1,y_1) and
(x_2,y_2) are the endpoints of the diameter)

The radius of the circle is the distance between the center and an endpoint of the diameter.


\textsf{radius}=√((a-x_1)^2+(b-y_1)^2)

(where
(a,b) is the center of the circle, and
(x_1,y_1) is an endpoint of the diameter)

The center-radius form of a circle:
(x - a)^2+(y-b)^2=r^2

(where (a, b) is the center and r is the radius)

Question 22


\textsf{Let }(x_1,y_1)=(-4.5)


\textsf{Let }(x_2,y_2)=(6,-9)


\textsf{center}=\left((-4+6)/(2),(5-9)/(2)\right)=(1,-2)


\textsf{radius}=√((1+4)^2+(-2-5)^2)=√(74)

⇒ equation of circle:
(x-1)^2+(y+2)^2=74

Question 26


\textsf{Let }(x_1,y_1)=(0,9)


\textsf{Let }(x_2,y_2)=(0,-9)


\textsf{center}=\left((0+0)/(2),(9-9)/(2)\right)=(0,0)


\textsf{radius}=√((0-0)^2+(0-9)^2)=9

⇒ equation of circle:
x^2+y^2=81

User Korwalskiy
by
5.0k points