Answer:
See explanation
Explanation:
The coordinate of ABCD is not given; So, I will solve using general coordinates (x,y).
First, ABCD is dilated by 1/3.
The rule is:
![(x,y) \to (1)/(3)(x,y)](https://img.qammunity.org/2022/formulas/mathematics/high-school/poi2cw4e5qg1um1pc2wbs73ynscv3ew8pz.png)
This gives
![(x,y) \to ((x)/(3),(y)/(3))](https://img.qammunity.org/2022/formulas/mathematics/high-school/hrurdsf2kdcubz2ua4j08a21bv3w4uggij.png)
Next, it is reflected across y-axis.
The rule is:
![(x,y) \to (-x,y)](https://img.qammunity.org/2022/formulas/mathematics/high-school/8bqq6o7m4fn6b59xtnohgb8e09qc84q8ll.png)
So, we have:
![((x)/(3),(y)/(3)) \to (-(x)/(3),(y)/(3))](https://img.qammunity.org/2022/formulas/mathematics/high-school/hlxs1kbtjsia63as03ozlsailb4azex8qj.png)
So, the complete transformation is:
![(x,y) \to ((x)/(3),(y)/(3)) \to (-(x)/(3),(y)/(3))](https://img.qammunity.org/2022/formulas/mathematics/high-school/on2i9iv9k405dbehqg74zoq12n833ynu3f.png)
Assume that:
![A = (1,3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/xnr40v3bkrg4hhhz8qbqd7z5pt7i94037k.png)
The transformation will be:
![A' = (-(1)/(3),(3)/(3))](https://img.qammunity.org/2022/formulas/mathematics/high-school/f1bwjaq39u25hwnf2i3tsqs0y1g17rca99.png)
![A' = (-(1)/(3),1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/7rctj28e42kjo2xpei8fsldgv3jamn1bi4.png)