218k views
3 votes
Find derivative of 3x^2+4 using limits

1 Answer

1 vote

The derivative of a function f(x) is defined as


f'(x)=\displaystyle\lim_(h\to0)\frac{f(x+h)-f(x)}h

For f(x) = 3x ² + 4, we have


f'(x)=\displaystyle\lim_(h\to0)\frac{(3(x+h)^2+4) - (3x^2+4)}h


f'(x)=\displaystyle\lim_(h\to0)\frac{(3(x^2+2xh+h^2) - 3x^2}h


f'(x)=\displaystyle\lim_(h\to0)\frac{6xh+3h^2}h


f'(x)=\displaystyle\lim_(h\to0)(6x+3h) = \boxed{6x}

User Nick ONeill
by
6.0k points