Answer:
The correct answer is "771.44; 779.16".
Explanation:
Given:
Number of samples,
![n = 40](https://img.qammunity.org/2022/formulas/mathematics/college/sdgvnnf2718xwnpc5dqv7za2j45yspxrbl.png)
Mean,
![\bar x = 775.3](https://img.qammunity.org/2022/formulas/mathematics/high-school/gxmlp0lr005dc7edykx9phqjtfenv6nvpo.png)
Standard deviation,
![\sigma = 14.9](https://img.qammunity.org/2022/formulas/mathematics/high-school/stgzstrfzok5bx2aqpljam42vfd6k52giz.png)
At 90% confidence interval,
![\alpha = 1-0.90](https://img.qammunity.org/2022/formulas/mathematics/high-school/51cv3j07n5azk2pog53g40po3pn69a4r02.png)
![=0.10](https://img.qammunity.org/2022/formulas/mathematics/high-school/1kvct9jril8m4ih4ns3ci60bqt899p8jqb.png)
![(\alpha)/(2) = 0.05](https://img.qammunity.org/2022/formulas/mathematics/high-school/9vfci0n3yowp6bjtimlix4vpb9mh835bm0.png)
From normal distribution at 90% confidence level,
![Z_{(\alpha)/(2) } = 1.64](https://img.qammunity.org/2022/formulas/mathematics/high-school/vhuxun3qa5lpaonxq8q0bps5a9k7i1vcmj.png)
Now,
Margin of error will be:
⇒
![E=Z_{(\alpha)/(2) }* (\sigma)/(√(n) )](https://img.qammunity.org/2022/formulas/mathematics/high-school/f8n8j9ndx67adsto19lp6mmshg59sd4x0o.png)
By substituting the values, we get
![=1.64* (14.9)/(√(40) )](https://img.qammunity.org/2022/formulas/mathematics/high-school/2ikgjhummkc932qghzsafe7jr3s9n9llhn.png)
![=3.86](https://img.qammunity.org/2022/formulas/mathematics/high-school/sm8lc5vtdgjek41flnegr32dq4kgxh2txx.png)
hence,
The mean at 90% CI will be:
=
![\bar X \pm \ E](https://img.qammunity.org/2022/formulas/mathematics/high-school/bt0fe1v470dks5i7m97hpt1qx437ejnqu6.png)
=
![775.3\ \pm \ 3.86](https://img.qammunity.org/2022/formulas/mathematics/high-school/58pwogskep6fhim155nmigr34xygng0kaw.png)
=
![771.44; 779.16](https://img.qammunity.org/2022/formulas/mathematics/high-school/jt9f4q3lyugd7114vvn7ysc8pgnkc3rtry.png)