88.7k views
8 votes
Convert polar equation to the standard form of each rectangular equation: r=2cosθ-3sinθ

2 Answers

5 votes


\\ \rm\Rrightarrow r=2cos\theta-3sin\theta

  • a(rcosTheta) +b(r sintheta)=ax+by


\\ \rm\Rrightarrow (2)/(r)cos\theta-(3)/(r) sin\theta=1


\\ \rm\Rrightarrow 2x-3y=1


\\ \rm\Rrightarrow 2x-3y-1=0

User Hessuew
by
3.9k points
10 votes

Answer:


(x-1)^2+(y+1.5y)^2=3.25

Explanation:


x=r \cos(\theta)


y=r \sin(\theta)

Given polar equation:


r=2\cos(\theta)-3 \sin(\theta)

Multiply both sides by r:


r^2=2r\cos(\theta)-3r \sin(\theta)

Know that
x^2+y^2=r^2:


x^2+y^2=2r\cos(\theta)-3r \sin(\theta)

Substitute
x=r \cos(\theta) and
y=r \sin(\theta) :


x^2+y^2=2x-3y

Therefore,


x^2-2x+y^2+3y=0

Complete the square:


(x-1)^2-1+(y+1.5y)^2-2.25=0


(x-1)^2+(y+1.5y)^2=3.25

User Ivo Wetzel
by
3.1k points