150k views
3 votes
What is the second integral of

(1)/(x)
?​

1 Answer

4 votes

Answer:


\displaystyle \int {\int {(1)/(x)} \, dx} \, dx = xln|x| - x + C

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Logarithmic Differentiation

Integration

  • Integrals
  • Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Logarithmic Integration

Integration by Parts:
\displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Explanation:

Step 1: Define

Identify


\displaystyle \int {\int {(1)/(x)} \, dx} \, dx

Step 2: Integrate Pt. 1

  1. [Inner Integral] Logarithmic Integration:
    \displaystyle \int ln \, dx

Step 3: Integrate Pt. 2

Identify variables for integration by parts using LIPET.

  1. Set u:
    \displaystyle u = ln|x|
  2. [u] Differentiate:
    \displaystyle du = (1)/(x) \ dx
  3. Set dv:
    \displaystyle dv = dx
  4. [dv] Integrate:
    \displaystyle v = x

Step 4: Integrate Pt. 3

  1. [Integral] Integration by Parts:
    \displaystyle \int x \, dx = xln|x| - \int {(x \cdot (1)/(x))} \, dx
  2. [Right Integral] Simplify:
    \displaystyle \int x \, dx = xln|x| - \int {} \, dx
  3. [Right Integral] Reverse Power Rule:
    \displaystyle \int ln \, dx = xln|x| - x + C
  4. Redefine:
    \displaystyle \int {\int {(1)/(x)} \, dx} \, dx = xln|x| - x + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

User Deolinda
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories