150k views
3 votes
What is the second integral of

(1)/(x)
?​

1 Answer

4 votes

Answer:


\displaystyle \int {\int {(1)/(x)} \, dx} \, dx = xln|x| - x + C

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Logarithmic Differentiation

Integration

  • Integrals
  • Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Logarithmic Integration

Integration by Parts:
\displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Explanation:

Step 1: Define

Identify


\displaystyle \int {\int {(1)/(x)} \, dx} \, dx

Step 2: Integrate Pt. 1

  1. [Inner Integral] Logarithmic Integration:
    \displaystyle \int ln \, dx

Step 3: Integrate Pt. 2

Identify variables for integration by parts using LIPET.

  1. Set u:
    \displaystyle u = ln|x|
  2. [u] Differentiate:
    \displaystyle du = (1)/(x) \ dx
  3. Set dv:
    \displaystyle dv = dx
  4. [dv] Integrate:
    \displaystyle v = x

Step 4: Integrate Pt. 3

  1. [Integral] Integration by Parts:
    \displaystyle \int x \, dx = xln|x| - \int {(x \cdot (1)/(x))} \, dx
  2. [Right Integral] Simplify:
    \displaystyle \int x \, dx = xln|x| - \int {} \, dx
  3. [Right Integral] Reverse Power Rule:
    \displaystyle \int ln \, dx = xln|x| - x + C
  4. Redefine:
    \displaystyle \int {\int {(1)/(x)} \, dx} \, dx = xln|x| - x + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

User Deolinda
by
4.2k points