Answer:
The probability of getting a reading between -1.42 degree C and 1.61 degree C is 0.8685.
Explanation:
We are given that
degree C
Standard deviation,
degree C
We have to find the probability of the reading between -1.42 and 1.61.
![P(-1.42<x<1.61)=P((-1.42-0)/(1)<(x-\mu)/(\sigma)<(1.61-0)/(1))](https://img.qammunity.org/2022/formulas/mathematics/college/vpguueyep6ksfbqmt5inea1k8andbnd8k4.png)
![P(-1.42<x<1.61)=P(-1.42<Z<1.61)](https://img.qammunity.org/2022/formulas/mathematics/college/43xgfq25e6674op5o2krsakwfnaqs8465t.png)
![P(-1.42<x<1.61)=P(Z<1.61)-P(Z<-1.42)](https://img.qammunity.org/2022/formulas/mathematics/college/l9omawug8fqddx3hqblu3sfu7unpc1lrm4.png)
Using the formula
![P(a<z<b)=P(z<b)-P(z<a)](https://img.qammunity.org/2022/formulas/mathematics/college/emdsn1bd6zkj84agzwrfp04sgimg408txg.png)
![P(-1.42<x<1.61)=0.94630-0.07780](https://img.qammunity.org/2022/formulas/mathematics/college/2nxakcam8xz0v2g9r6x4gn00t5wklowoaw.png)
![P(-1.42<x<1.61)=0.8685](https://img.qammunity.org/2022/formulas/mathematics/college/5sera9pnjbvvzxjs9wdf779avg0rliizfo.png)
Hence, the probability of getting a reading between -1.42 degree C and 1.61 degree C is 0.8685.