60.5k views
1 vote
Rationalize the denominator:

√7-√3 /√7+√3

help me this question plZ



2 Answers

4 votes


\tt \huge \leadsto ( √(7) - √(3) )/( √(7) + √(3) )


\tt \huge \leadsto ( √(7) - √(3) )/( √(7) + √(3)) * ( √(7) - √(3) )/( √(7) - √(3) )


\tt \huge \leadsto (7 - 3)/( (√(7 ))^(2) - ( √(3))^(2) )


\tt \huge \leadsto (4)/(7 - 3)


\tt \huge \leadsto(4)/(4)


\tt\huge\leadsto{1}

User Vickrant
by
5.0k points
4 votes

Answer:

Explanation:

To rationalize the denominator multiply the numerator and denominator by the conjugate of √7 + √3 = √7- √3


(√(7)-√(3))/(√(7)+√(3))=((√(7)-√(3))(√(7)-√(3)))/((√(7)+√(3))(√(7)-√(3)))\\\\\\= ((√(7)-√(3))^(2))/((√(7))^(2)-(√(3))^(2))\\\\\\= ((√(7))^(2)-2*(√(7))*(√(3))+(√(3))^(2)))/(7-3)\\\\=(7-2√(21)+3)/(4)\\\\=(10-2√(21))/(4)\\\\=(2(5-√(21)))/(4)\\\\=(5-√(21))/(2)

User Jeffrey Goines
by
4.1k points