66.3k views
0 votes
Simplify
(9x^(16) )/(6(x^(2) )^(3)x^(2) ) }

User Otra
by
7.9k points

1 Answer

4 votes

Answer:


\displaystyle (3x^8)/(2)

General Formulas and Concepts:

Algebra I

  • Exponential Rule [Multiplying]:
    \displaystyle b^m \cdot b^n = b^(m + n)
  • Exponential Rule [Dividing]:
    \displaystyle (b^m)/(b^n) = b^(m - n)
  • Exponential Rule [Powering]:
    \displaystyle (b^m)^n = b^(m \cdot n)
  • Exponential Rule [Rewrite]:
    \displaystyle b^(-m) = (1)/(b^m)

Explanation:

Step 1: Define

Identify


\displaystyle (9x^(16))/(6(x^2)^3x^2)

Step 2: Simplify

  1. Exponential Rule [Powering]:
    \displaystyle (9x^(16))/(6x^6x^2)
  2. Exponential Rule [Multiplying]:
    \displaystyle (9x^(16))/(6x^8)
  3. Exponential Rule [Dividing]:
    \displaystyle (9x^8)/(6)
  4. Simplify:
    \displaystyle (3x^8)/(2)
User Keto
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories