66.3k views
0 votes
Simplify
(9x^(16) )/(6(x^(2) )^(3)x^(2) ) }

User Otra
by
4.3k points

1 Answer

4 votes

Answer:


\displaystyle (3x^8)/(2)

General Formulas and Concepts:

Algebra I

  • Exponential Rule [Multiplying]:
    \displaystyle b^m \cdot b^n = b^(m + n)
  • Exponential Rule [Dividing]:
    \displaystyle (b^m)/(b^n) = b^(m - n)
  • Exponential Rule [Powering]:
    \displaystyle (b^m)^n = b^(m \cdot n)
  • Exponential Rule [Rewrite]:
    \displaystyle b^(-m) = (1)/(b^m)

Explanation:

Step 1: Define

Identify


\displaystyle (9x^(16))/(6(x^2)^3x^2)

Step 2: Simplify

  1. Exponential Rule [Powering]:
    \displaystyle (9x^(16))/(6x^6x^2)
  2. Exponential Rule [Multiplying]:
    \displaystyle (9x^(16))/(6x^8)
  3. Exponential Rule [Dividing]:
    \displaystyle (9x^8)/(6)
  4. Simplify:
    \displaystyle (3x^8)/(2)
User Keto
by
4.4k points