74.1k views
0 votes
Find dy/dx given that y = sin x / 1 + cos x​

Find dy/dx given that y = sin x / 1 + cos x​-example-1

1 Answer

5 votes

Answer:


(1)/(1 + \cos(x) )

Explanation:


y = ( \sin(x) )/(1 + \cos(x) )

differentiating numerator wrt x :-

(sinx)' = cos x

differentiating denominator wrt x :-

(1 + cos x)' = (cosx)' = - sinx

  • Let's say the denominator was "v" and the numerator was "u"


((u)/(v) )' = \frac{v. \: (u)' - u.(v)' }{ {v}^(2) }

here,

  • since u is the numerator u= sinx and u = cos x
  • v(denominator) = 1 + cos x; v' = - sinx


= \frac{((1 + \cos \: x) \cos \: x )- (\sin \: x. ( - \sin \: x) ) }{( {1 + \cos(x)) }^(2) }


= \frac{ \cos(x) + \cos {}^(2) (x) + \sin {}^(2) (x) }{(1 + \cos \: x) {}^(2) }

since cos²x + sin²x = 1


= \frac{ \cos \: x + 1}{(1 + \cos \: x) {}^(2) }

diving numerator and denominator by 1 + cos x


= (1)/(1 + \cos(x) )

User Lex Lustor
by
4.9k points