Answer:
1d = -3
2b = 2
2c = 1
3a = 3
3d = 4
Explanation:
Polynomial 1:
![x^2-8x+15](https://img.qammunity.org/2022/formulas/mathematics/college/emx956gvqsla3s4v6smg7s6iss780xj7h7.png)
Multiply the leading coefficient, 1, and the last term, 15. You get: 15.
Then, list out the factors of 15 and the addends of -8 until you get two of numbers that are the same:
Factors of 15: -5 * -3
Addends of -8: -5 + -3
Replace the -8x with -5x - 3x:
![x^2-5x-3x+15](https://img.qammunity.org/2022/formulas/mathematics/college/76egqkuaq5o4lygjy0fwvjd7vylhxq2p42.png)
Put parentheses around the first 2 terms & last 2 terms and factor like so:
![(x^2-5x)-(3x+15)](https://img.qammunity.org/2022/formulas/mathematics/college/jwvqgn5386nso6smcy23ls5ifia12dfagh.png)
![x(x-5)-3(x-5)](https://img.qammunity.org/2022/formulas/mathematics/college/q6axtpip5tods87fp2t1ljp2c9s39e7k7c.png)
![(x-5)(x-3)](https://img.qammunity.org/2022/formulas/mathematics/college/v9i73g0opnup84z4bak5yxdzv7oqqyynox.png)
Looking at the answer (ax + b)(cx + d), d would correspond with -3.
Polynomial 2:
![2x^3-8x^2-24x](https://img.qammunity.org/2022/formulas/mathematics/college/p3wyqb0yzsr0vo4a7w8y240v9scst4ugkj.png)
First factor out the x:
![x(2x^(2)-8x-24)](https://img.qammunity.org/2022/formulas/mathematics/college/morx9zh8chb13r526qhl9vh18ogkgewahy.png)
Divide the polynomial inside by 2 and place the 2 outside with the x:
![2x(x^2-4x-12)](https://img.qammunity.org/2022/formulas/mathematics/college/xzs4togs92xnw8zubwel9xmkjmcibh82c7.png)
Then find the factors of 1*-12 and the addends of -4 and see which two numbers match:
Factors of -12: -6 * 2
Addends of -4: -6 + 2
Replace the -8x with -6x + 2x:
![2x(x^2-6x+2x-12)](https://img.qammunity.org/2022/formulas/mathematics/college/f8oxplih81nlkpkjo2k12rnm0o2s62hj2x.png)
Put parentheses around the first 2 terms & last 2 terms and factor like so:
![2x((x^2-6x)+(2x-12))](https://img.qammunity.org/2022/formulas/mathematics/college/xqsnzva10x0nqgbvosv2bqpw2g91carinw.png)
![2x(x(x-6)+2(x-6))](https://img.qammunity.org/2022/formulas/mathematics/college/g7egc20d2wsrwgzsqh3t2d17zuc15t57jq.png)
![2x((x+2)(x-6))](https://img.qammunity.org/2022/formulas/mathematics/college/i9ejypfj6udo6l7ndkgbc8hcegxeuezaz3.png)
![2x(x+2)(x-6)](https://img.qammunity.org/2022/formulas/mathematics/college/b5b7llmfy7zqzfldy03bd7tocehdq6hgrk.png)
Looking at the answer (2x)(ax + b)(cx + d), b & c would correspond with 2 & 1.
Polynomial 3:
![6x^2+14x+4](https://img.qammunity.org/2022/formulas/mathematics/college/zj8xkf96ksv66gdqzrxze2umyyw5kr9se2.png)
Divide the polynomial by 2:
![(2)(3x^2+7x+2)](https://img.qammunity.org/2022/formulas/mathematics/college/jbr24i5drfbsehkcy7d3aicznbt24smjig.png)
Find the factors of 3*2 and the addends of 7 and see which two numbers match:
Factors of 6: 6 * 1
Addends of 7: 6 + 1
Replace the 7x with 6x + x:
![(2)(3x^2+6x+x+2)](https://img.qammunity.org/2022/formulas/mathematics/college/drsq45kfe2ic1du6gnr6yc69o8hsfbhv4a.png)
Put parentheses around the first 2 terms & last 2 terms and factor like so:
![(2)((3x^2+6x)+(x+2))](https://img.qammunity.org/2022/formulas/mathematics/college/t15lajlr3c8nk7rxraaxstntd4b8i23n55.png)
![(2)(3x(x+2)+(x+2))](https://img.qammunity.org/2022/formulas/mathematics/college/3i3o477lqiody9303mwd4bm7hj7av4wh1i.png)
![(2)((3x+1)(x+2))](https://img.qammunity.org/2022/formulas/mathematics/college/141bufwtcr10u36cyketumt7nvi8p889he.png)
![(2)(3x+1)(x+2)](https://img.qammunity.org/2022/formulas/mathematics/college/fyw9px9biwieo2iiv0i8xiovhpcz4epnen.png)
Then multiply the 2 with the (x+2) and here's your final answer:
![(3x+1)(2x+4))](https://img.qammunity.org/2022/formulas/mathematics/college/xluqotdcvizn6pqbys5fmbrq48cp59wqg7.png)
Looking at the answer (ax + b)(cx + d), a & d correspond with 3 & 4.
Hope that helps (●'◡'●)
(This took a while to write, sorry about that)