Given:
The x- intercepts of a parabola are (0,-6) and (0,4).
The parabola crosses the y- axis at -120.
Lucas said that an equation for the parabola is
and that the coordinates of the vertex are (-1, -125).
To find:
Whether Lucas is correct or not.
Solution:
The x- intercepts of a parabola are (0,-6) and (0,4). It means (x+6) and (x-4) are the factors of the equation of the parabola.
...(i)
The parabola crosses the y- axis at -120. It means the equation of the parabola must be true for (0,-120).
![-120=a(0+6)(0-4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/rdn3cpv1c5p4tbsh2188cnvkw7yyf0vrb2.png)
![-120=a(6)(-4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/3u6nijfxd309qcn2wiqxuwp51lqg8hsrge.png)
![-120=-24a](https://img.qammunity.org/2022/formulas/mathematics/high-school/iw224y6q46srrnuaymhf2hiv4ttyoanlg8.png)
Divide both sides by -24.
![(-120)/(-24)=a](https://img.qammunity.org/2022/formulas/mathematics/high-school/1uv4edmuoyaq96ud64iyxketzss4sa7q34.png)
![5=a](https://img.qammunity.org/2022/formulas/mathematics/college/qbbud19z2cimr6hc9iqnoxxuwhhb9unt9b.png)
Substituting
in (i), we get
![y=5(x+6)(x-4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ru1c97ubbvn24d6smqvcl7r5jl3m6qd5eb.png)
![y=5(x^2+6x-4x-24)](https://img.qammunity.org/2022/formulas/mathematics/high-school/22xoop4ml7ic8dcuntcbnoc2pq1vbtrtlk.png)
![y=5(x^2+2x-24)](https://img.qammunity.org/2022/formulas/mathematics/high-school/hn0e1serv553qbzlbky8u7d7ehtznh5nqs.png)
![y=5x^2+10x-120](https://img.qammunity.org/2022/formulas/mathematics/high-school/mb2e832oesph58nmwwc2egjnwfkf90tzrx.png)
So, the equation of the parabola is
.
The vertex of a parabola
is:
![Vertex=\left(-(b)/(2a),f(-(b)/(2a))\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vbz4ql9lozkz6o8frxc0vlg9j6i7j1vkz6.png)
In the equation of the parabola,
.
![-(b)/(2a)=-(10)/(2(5))](https://img.qammunity.org/2022/formulas/mathematics/high-school/3zxwl6buicn0sj3yf1rvtxubgd8ej86pqr.png)
![-(b)/(2a)=-(10)/(10)](https://img.qammunity.org/2022/formulas/mathematics/high-school/dme21vksb9p650e3osu56i5ihjwtj0keqi.png)
![-(b)/(2a)=-1](https://img.qammunity.org/2022/formulas/mathematics/high-school/v0dyhqths9umpbs0aaprqebnsfgfhtlvg0.png)
Putting
in the equation of the parabola, we get
![y=5(-1)^2+10(-1)-120](https://img.qammunity.org/2022/formulas/mathematics/high-school/utruu4lzmv6u95uu1yx082n850gm4dt82d.png)
![y=5-10-120](https://img.qammunity.org/2022/formulas/mathematics/high-school/uu7blmw4w6bnnd1vsyf64dklwxli0bj63y.png)
![y=-125](https://img.qammunity.org/2022/formulas/mathematics/high-school/bw7frgsc5x3dj3dzheedkeql5h31vb22ig.png)
So, the vertex of the parabola is at point (-1,-125).
Therefore, Lucas is correct.