222k views
2 votes
Find the perimeter of WXYZ. Round to the nearest tenth if necessary.

Find the perimeter of WXYZ. Round to the nearest tenth if necessary.-example-1
User StuperUser
by
4.8k points

2 Answers

3 votes

Answer:CCCCCCCCCCCCCCCCC

Explanation:

User Chris Haas
by
5.0k points
4 votes

Answer:

C. 15.6

Explanation:

Perimeter of WXYZ = WX + XY + YZ + ZW

Use the distance formula,
d = √((x_2 - x_1)^2 + (y_2 - y_1)^2) to calculate the length of each segment.

✔️Distance between W(-1, 1) and X(1, 2):

Let,


W(-1, 1) = (x_1, y_1)


X(1, 2) = (x_2, y_2)

Plug in the values


WX = √((1 - (-1))^2 + (2 - 1)^2)


WX = √((2)^2 + (1)^2)


WX = √(4 + 1)


WX = √(5)


WX = 2.24

✔️Distance between X(1, 2) and Y(2, -4)

Let,


X(1, 2) = (x_1, y_1)


Y(2, -4) = (x_2, y_2)

Plug in the values


XY = √((2 - 1)^2 + (-4 - 2)^2)


XY = √((1)^2 + (-6)^2)


XY = √(1 + 36)


XY = √(37)


XY = 6.08

✔️Distance between Y(2, -4) and Z(-2, -1)

Let,


Y(2, -4) = (x_1, y_1)


Z(-2, -1) = (x_2, y_2)

Plug in the values


YZ = √((-2 - 2)^2 + (-1 -(-4))^2)


YZ = √((-4)^2 + (3)^2)


YZ = √(16 + 9)


YZ = √(25)


YZ = 5

✔️Distance between Z(-2, -1) and W(-1, 1)

Let,


Z(-2, -1) = (x_1, y_1)


W(-1, 1) = (x_2, y_2)

Plug in the values


ZW = √((-1 -(-2))^2 + (1 - (-1))^2)


ZW = √((1)^2 + (2)^2)


ZW = √(1 + 4)


ZW = √(5)


ZW = 2.24

✅Perimeter = 2.24 + 6.08 + 5 + 2.24 = 15.56

≈ 15.6

User Jsmedmar
by
4.4k points