222k views
2 votes
Find the perimeter of WXYZ. Round to the nearest tenth if necessary.

Find the perimeter of WXYZ. Round to the nearest tenth if necessary.-example-1
User StuperUser
by
8.2k points

2 Answers

3 votes

Answer:CCCCCCCCCCCCCCCCC

Explanation:

User Chris Haas
by
8.2k points
4 votes

Answer:

C. 15.6

Explanation:

Perimeter of WXYZ = WX + XY + YZ + ZW

Use the distance formula,
d = √((x_2 - x_1)^2 + (y_2 - y_1)^2) to calculate the length of each segment.

✔️Distance between W(-1, 1) and X(1, 2):

Let,


W(-1, 1) = (x_1, y_1)


X(1, 2) = (x_2, y_2)

Plug in the values


WX = √((1 - (-1))^2 + (2 - 1)^2)


WX = √((2)^2 + (1)^2)


WX = √(4 + 1)


WX = √(5)


WX = 2.24

✔️Distance between X(1, 2) and Y(2, -4)

Let,


X(1, 2) = (x_1, y_1)


Y(2, -4) = (x_2, y_2)

Plug in the values


XY = √((2 - 1)^2 + (-4 - 2)^2)


XY = √((1)^2 + (-6)^2)


XY = √(1 + 36)


XY = √(37)


XY = 6.08

✔️Distance between Y(2, -4) and Z(-2, -1)

Let,


Y(2, -4) = (x_1, y_1)


Z(-2, -1) = (x_2, y_2)

Plug in the values


YZ = √((-2 - 2)^2 + (-1 -(-4))^2)


YZ = √((-4)^2 + (3)^2)


YZ = √(16 + 9)


YZ = √(25)


YZ = 5

✔️Distance between Z(-2, -1) and W(-1, 1)

Let,


Z(-2, -1) = (x_1, y_1)


W(-1, 1) = (x_2, y_2)

Plug in the values


ZW = √((-1 -(-2))^2 + (1 - (-1))^2)


ZW = √((1)^2 + (2)^2)


ZW = √(1 + 4)


ZW = √(5)


ZW = 2.24

✅Perimeter = 2.24 + 6.08 + 5 + 2.24 = 15.56

≈ 15.6

User Jsmedmar
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories