155k views
19 votes
18. Your neighbor's yard is in the shape of a triangle, with dimensions 120 ft, 84 ft,

and 85 ft. Is the yard an acute, obtuse, or a right triangle? Explain.

2 Answers

9 votes

The yard is obtuse!


\large\underline{\underline{\maltese{\red{\pmb{\sf{\: Explanation :-}}}}}}

  • Determination of acute angled triangle:-When the square of the longest side is less than the sum of the squares of two shorter sides then the triangle is acute angled.
  • Determination of right angled triangle:-When the square of the longest side is equal to the sum of the squares of two shorter sides then the triangle is right angled .
  • Determination of obtuse angled triangle:-When the square of the longest side is more than the sum of the squares of two shorter sides then the triangle is obtuse angled.


\red{ \rule{35pt}{2pt}} \orange{ \rule{35pt}{2pt}} \color{yellow}{ \rule{35pt} {2pt}} \green{ \rule{35pt} {2pt}} \blue{ \rule{35pt} {2pt}} \purple{ \rule{35pt} {2pt}}

Final answer ⤵️

  • Longest side = 120 feet
  • Shorter side = 85 feet
  • Shortest side = 84 feet


\sf \longrightarrow \: {120}^(2) > {85}^(2) + {84}^(2)


\sf \longrightarrow \:14400> 7225 + 7056


\sf \longrightarrow \:14400> 14281


\qquad \mathbb{TRUE}

Thus, The triangle is obtuse angled...~

User Kalmas
by
5.1k points
10 votes
  • a=120
  • b=84
  • c=85

We need angle

Apply law of cosines


\\ \rm\Rrightarrow c^2=a^2+b^2-2abcos\gamma


\\ \rm\Rrightarrow 2abcos\gamma=a^2+b^2-c^2


\\ \rm\Rrightarrow cos\gamma=(a^2+b^2-c^2)/(-2ab)


\\ \rm\Rrightarrow cos\gamma=(120^2+84^2-85^2)/(-2(120)(84))


\\ \rm\Rrightarrow cos\gamma=(14400+7056-7225)/(-20160)


\\ \rm\Rrightarrow cos\gamma=(14231)/(-20160)


\\ \rm\Rrightarrow cos\gamma=-0.714


\\ \rm\Rrightarrow \gamma=cos^(-1)(-0.714)


\\ \rm\Rrightarrow \gamma=135.56°

The yard is obtuse

User Keyur Nimavat
by
5.6k points