Answer:
B) 720.
Explanation:
We can use the Binomial Expansion Theorem:
![\displaystyle (a+b)^n=\sum_(k=0)^(n)\binom{n}{k}a^kb^(n-k)](https://img.qammunity.org/2022/formulas/mathematics/high-school/danvby1xz6mxxcm65jdoztpwocccpag4i2.png)
We have the expression:
![\displaystyle (2x-3)^5](https://img.qammunity.org/2022/formulas/mathematics/high-school/veyhtuwjjkx5lo84su27johjeczmhi9tdt.png)
Therefore, a = 2x, b = -3, and n = 5.
We want to find the coefficient of x³. To get x³, we can cube a. Therefore, we can find our coefficient by letting k = 3. Hence:
![\displaystyle \binom{5}{3}(2x)^3(-3)^(5-3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/idg354d5pn65vovgzjxn7ro0awm3n85bfp.png)
Evaluate:
![\displaystyle =10(8x^3)(9)=720x^3](https://img.qammunity.org/2022/formulas/mathematics/high-school/j7tlt69hd40tvn3aiqqqud9stefb6jdr8x.png)
Our answer is B.