Answer:
![\displaystyle a=(7)/(2)\text{ or } 3.5](https://img.qammunity.org/2022/formulas/mathematics/high-school/2fasfnh1af5flmzoi0ocozzoxmpuz0twhg.png)
Explanation:
We have the two points (3a, 4) and (a, -3).
And we want to find the value of a such that the gradient of the line joining the two points is 1.
Recall that the gradient or slope of a line is given by the formula:
![\displaystyle m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/plhrgiu7wq19mt7p36lnp6s5da883uxskw.png)
Where (x₁, y₁) is one point and (x₂, y₂) is the other.
Let (3a, 4) be (x₁, y₁) and (a, -3) be (x₂, y₂). Substitute:
![\displaystyle m=(-3-4)/(a-3a)](https://img.qammunity.org/2022/formulas/mathematics/high-school/sodtjgbylp4s0yzyhale8sup0bfe47nmaw.png)
Simplify:
![\displaystyle m=(-7)/(-2a)=(7)/(2a)](https://img.qammunity.org/2022/formulas/mathematics/high-school/cxiapu3hcu9p4kci0m8g89y3tdy8xky5ma.png)
We want to gradient to be one. Therefore, m = 1:
![\displaystyle 1=(7)/(2a)](https://img.qammunity.org/2022/formulas/mathematics/high-school/tujel48dc0w0jdziomdv6npm5ucbm6dppc.png)
Solve for a. Rewrite:
![\displaystyle (1)/(1)=(7)/(2a)](https://img.qammunity.org/2022/formulas/mathematics/high-school/58egvdq8ojmfxjjmjbjmym6jr62t7v9szj.png)
Cross-multiply:
![2a=7](https://img.qammunity.org/2022/formulas/mathematics/high-school/87f9uidy5bl7fnzwe1d9r5oj21yi53obbc.png)
Therefore:
![\displaystyle a=(7)/(2)\text{ or } 3.5](https://img.qammunity.org/2022/formulas/mathematics/high-school/2fasfnh1af5flmzoi0ocozzoxmpuz0twhg.png)