154k views
4 votes
does the presence of introns exons in eukaroytic cells provide more potentia diversity in gene products than is possible in porkatroi cells

1 Answer

5 votes

Answer: Yes. Splicing can be done in different ways to yield different mRNAs wich will create different proteins. Prokaryotes are not able to do this.

Step-by-step explanation:

DNA (deoxyribonucleic acid) is a molecule that contains the genetic information for synthesizing amino acids that form proteins. To do this, DNA must first be transcribed into RNA (ribonucleic acid) and this is the molecule used for protein synthesis (translation). The newly transcribed RNA (called primary messenger RNA) from DNA results in a very long molecule and also has regions that do not code for anything, called introns, which are removed by a process called splicing. Exons are segments in the RNA that do code for amino acids and remain in the mature mRNA after splicing.

Splicing is a process by which introns are cleaved from the primary messenger RNA and exons are joined to generate mature messenger RNA. In addition, alternative splicing occurs which allows different mRNA isoforms and thus different proteins to be obtained from a primary mRNA transcript. This is because the exons will be joined or spliced in different ways, giving rise to different mature messenger RNA sequences. This process occurs mainly in eukaryotes, although it can also be observed in viruses. But it does not take place in Prokaryotes (Bacteria).

In summary, exons/introns can be spliced together in different ways to yield different mRNAs sequences. Each different mRNA sequence will code for a different protein.

User Maimouna
by
4.3k points