161k views
4 votes
SCALCET8 3.10.025. Use a linear approximation (or differentials) to estimate the given number. (Round your answer to five decimal places.) 3 126

User Lmcadory
by
5.3k points

1 Answer

6 votes

Answer:


f(126) \approx 5.01333

Explanation:

Given


\sqrt[3]{126}

Required

Solve using differentials

In differentiation:


f(x+\triangle x) \approx f(x) + \triangle x \cdot f'(x)

Express 126 as 125 + 1;

i.e.


x = 125; \triangle x = 1

So, we have:


f(125+1) \approx f(125) + 1 \cdot f'(125)


f(126) \approx f(125) + 1 \cdot f'(125)

To calculate f(125), we have:


f(x) = \sqrt[3]{x}


f(125) = \sqrt[3]{125}


f(125) = 5

So:


f(126) \approx f(125) + 1 \cdot f'(125)


f(126) \approx 5 + 1 \cdot f'(125)


f(126) \approx 5 + f'(125)

Also:


f(x) = \sqrt[3]{x}

Rewrite as:


f(x) = x^(1)/(3)

Differentiate


f'(x) = (1)/(3)x^{(1)/(3) - 1}\\

Using law of indices, we have:


f'(x) = (x^(1)/(3))/(3x)

So:


f'(125) = (125^(1)/(3))/(3*125)


f'(125) = (5)/(375)


f'(125) = (1)/(75)

So, we have:


f(126) \approx 5 + f'(125)


f(126) \approx 5 + (1)/(75)


f(126) \approx 5 + 0.01333


f(126) \approx 5.01333

User Kavinhuh
by
5.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.