161k views
4 votes
SCALCET8 3.10.025. Use a linear approximation (or differentials) to estimate the given number. (Round your answer to five decimal places.) 3 126

User Lmcadory
by
8.4k points

1 Answer

6 votes

Answer:


f(126) \approx 5.01333

Explanation:

Given


\sqrt[3]{126}

Required

Solve using differentials

In differentiation:


f(x+\triangle x) \approx f(x) + \triangle x \cdot f'(x)

Express 126 as 125 + 1;

i.e.


x = 125; \triangle x = 1

So, we have:


f(125+1) \approx f(125) + 1 \cdot f'(125)


f(126) \approx f(125) + 1 \cdot f'(125)

To calculate f(125), we have:


f(x) = \sqrt[3]{x}


f(125) = \sqrt[3]{125}


f(125) = 5

So:


f(126) \approx f(125) + 1 \cdot f'(125)


f(126) \approx 5 + 1 \cdot f'(125)


f(126) \approx 5 + f'(125)

Also:


f(x) = \sqrt[3]{x}

Rewrite as:


f(x) = x^(1)/(3)

Differentiate


f'(x) = (1)/(3)x^{(1)/(3) - 1}\\

Using law of indices, we have:


f'(x) = (x^(1)/(3))/(3x)

So:


f'(125) = (125^(1)/(3))/(3*125)


f'(125) = (5)/(375)


f'(125) = (1)/(75)

So, we have:


f(126) \approx 5 + f'(125)


f(126) \approx 5 + (1)/(75)


f(126) \approx 5 + 0.01333


f(126) \approx 5.01333

User Kavinhuh
by
8.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories