Given:
The table of values for the function f(x).
To find:
The values
and
.
Solution:
From the given table, it is clear that the function f(x) is defined as:
![f(x)=\{(-14,11),(-7,-12),(-12,-5),(9,1),(10,-2),(-2,13)\}](https://img.qammunity.org/2022/formulas/mathematics/high-school/p3ilwplo4wum1ahw112hwhrfw72533eua8.png)
We know that if (a,b) is in the function f(x), then (b,a) must be in the function
. So, the inverse function is defined as:
![f^(-1)(x)=\{(11,-14),(-12,-7),(-5,-12),(1,9),(-2,10),(13,-2)\}](https://img.qammunity.org/2022/formulas/mathematics/high-school/6ccu0qbm63axa2z8v1o5qrwmp1t0y0sakd.png)
And,
![f^(-1)(f(a))=f^(1)(b)](https://img.qammunity.org/2022/formulas/mathematics/high-school/fhbkccaket505om6k99nr8qamnx7yf93uk.png)
...(i)
Using (i), we get
![f^(-1)(f(3.14))=3.14](https://img.qammunity.org/2022/formulas/mathematics/high-school/f5cy8n5negxmquili0dqk6wccrfgoswyfh.png)
Now,
![f(f(-7))=f(-12)](https://img.qammunity.org/2022/formulas/mathematics/high-school/bwpc2m8ugngbxkkcn4k750zu4j2ig10bh6.png)
![f(f(-7))=5](https://img.qammunity.org/2022/formulas/mathematics/high-school/zrxonraql102sjz9n9s211a9oraraes1t9.png)
Therefore, the required values are
and
.