Answer:
R = (-3, 8).
Explanation:
Recall the midpoint formula:
![\displaystyle M=\left((x_1+x_2)/(2), (y_1+y_2)/(2)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/1p22qos76supx1lz8mvn6itoddsrd5kjyo.png)
Where M is the midpoint, (x₁, y₁) is one point and (x₂, y₂) is another.
We are given that Q is the midpoint of PR, where P = (11, -2) and Q = (4, 3) and we want to find the coordinates of R.
Substitute Q for M and let P(11, -2) be (x₁, y₁). Hence:
![\displaystyle (4, 3)=\left((11+x_2)/(2), (-2+y_2)/(2)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/lw47a1hg8fsq57nf88ax5gkb4fw6mgp7ow.png)
Split into two separate equations:
![\displaystyle (11+x_2)/(2)=4\text{ and } (-2+y_2)/(2)=3](https://img.qammunity.org/2022/formulas/mathematics/high-school/yd9q4wwzo4aqhxat2bi2ctf0ahzik7wgik.png)
Solve for each case:
![\displaystyle 11+x_2=8\Rightarrow x_2=-3](https://img.qammunity.org/2022/formulas/mathematics/high-school/hm2fgvo64n3nkqtp20gqahrq2qo9c9x6vp.png)
![\displaystyle -2+y_2=6\Rightarrow y_2=8](https://img.qammunity.org/2022/formulas/mathematics/high-school/kjl8mm7h1zvmj3k2a5y1ozb0kz50c0x8nd.png)
Therefore, our second point (x₂, y₂) is (-3, 8).
Hence, R = (-3, 8).