149k views
4 votes
A given population proportion is .25. What is the probability of getting each of the following sample proportions

User Arwildo
by
5.4k points

1 Answer

1 vote

This question is incomplete, the complete question is;

A given population proportion is .25. What is the probability of getting each of the following sample proportions

a) n = 110 and = p^ ≤ 0.21, prob = ?

b) n = 33 and p^ > 0.24, prob = ?

Round all z values to 2 decimal places. Round all intermediate calculation and answers to 4 decimal places.)

Answer:

a) the probability of getting the sample proportion is 0.1660

b) the probability of getting the sample proportion is 0.5517

Explanation:

Given the data in the questions

a)

population proportion = 0.25

q = 1 - p = 1 - 0.25 = 0.75

sample size n = 110

mean = μ = 0.25

S.D = √( p( 1 - p) / n ) = √(0.25( 1 - 0.25) / 110 ) √( 0.1875 / 110 ) = 0.0413

Now, P( p^ ≤ 0.21 )

= P[ (( p^ - μ ) /S.D) < (( 0.21 - μ ) / S.D)

= P[ Z < ( 0.21 - 0.25 ) / 0.0413)

= P[ Z < -0.04 / 0.0413]

= P[ Z < -0.97 ]

from z-score table

P( X ≤ 0.21 ) = 0.1660

Therefore, the probability of getting the sample proportion is 0.1660

b)

population proportion = 0.25

q = 1 - p = 1 - 0.25 = 0.75

sample size n = 33

mean = μ = 0.25

S.D = √( p( 1 - p) / n ) = √(0.25( 1 - 0.25) / 33 ) = √( 0.1875 / 33 ) = 0.0754

Now, P( p^ > 0.24 )

= P[ (( p^ - μ ) /S.D) > (( 0.24 - μ ) / S.D)

= P[ Z > ( 0.24 - 0.25 ) / 0.0754 )

= P[ Z > -0.01 / 0.0754 ]

= P[ Z > -0.13 ]

= 1 - P[ Z < -0.13 ]

from z-score table

{P[ Z < -0.13 ] = 0.4483}

1 - 0.4483

P( p^ > 0.24 ) = 0.5517

Therefore, the probability of getting the sample proportion is 0.5517

User Vishy Dewangan
by
4.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.