235k views
0 votes
Find the limit of f as or show that the limit does not exist. Consider converting the function to polar coordinates to make finding the limit easier. f(x,y)

User Garvin
by
8.1k points

1 Answer

2 votes

Answer:


\lim_((x,y) \to (0,0)) (x^2 \sin^2y)/(x^2+2y^2) = 0

Explanation:

Given


f(x,y) = (x^2 \sin^2y)/(x^2+2y^2)

Required


\lim_((x,y) \to (0,0)) f(x,y)


\lim_((x,y) \to (0,0)) f(x,y) becomes


\lim_((x,y) \to (0,0)) (x^2 \sin^2y)/(x^2+2y^2)

Multiply by 1


\lim_((x,y) \to (0,0)) (x^2 \sin^2y)/(x^2+2y^2)\cdot 1

Express 1 as


(y^2)/(y^2) = 1

So, the expression becomes:


\lim_((x,y) \to (0,0)) (x^2 \sin^2y)/(x^2+2y^2) \cdot (y^2)/(y^2)

Rewrite as:


\lim_((x,y) \to (0,0)) (x^2 y^2)/(x^2+2y^2) \cdot (\sin^2y)/(y^2)

In limits:


\lim_((x,y) \to (0,0)) (\sin^2y)/(y^2) \to 1

So, we have:


\lim_((x,y) \to (0,0)) (x^2 y^2)/(x^2+2y^2) *1


\lim_((x,y) \to (0,0)) (x^2 y^2)/(x^2+2y^2)

Convert to polar coordinates; such that:


x = r\cos\theta;\ \ y = r\sin\theta;

So, we have:


\lim_((x,y) \to (0,0)) ((r\cos\theta)^2 (r\sin\theta;)^2)/((r\cos\theta)^2+2(r\sin\theta;)^2)

Expand


\lim_((x,y) \to (0,0)) (r^4\cos^2\theta\sin^2\theta)/(r^2\cos^2\theta+2r^2\sin^2\theta)

Factor out
r^2


\lim_((x,y) \to (0,0)) (r^4\cos^2\theta\sin^2\theta)/(r^2(\cos^2\theta+2\sin^2\theta))

Cancel out
r^2


\lim_((x,y) \to (0,0)) (r^2\cos^2\theta\sin^2\theta)/(\cos^2\theta+2\sin^2\theta)


\lim_((x,y) \to (0,0)) (r^2\cos^2\theta\sin^2\theta)/(\cos^2\theta+2\sin^2\theta)

Express
2\sin^2 \theta as
\sin^2\theta+\sin^2\theta

So:


\lim_((x,y) \to (0,0)) (r^2\cos^2\theta\sin^2\theta)/(\cos^2\theta+\sin^2\theta+\sin^2\theta)

In trigonometry:


\cos^2\theta + \sin^2\theta = 1

So, we have:


\lim_((x,y) \to (0,0)) (r^2\cos^2\theta\sin^2\theta)/(1+\sin^2\theta)

Evaluate the limits by substituting 0 for r


(0^2 \cdot \cos^2\theta\sin^2\theta)/(1+\sin^2\theta)


(0 \cdot \cos^2\theta\sin^2\theta)/(1+\sin^2\theta)


(0)/(1+\sin^2\theta)

Since the denominator is non-zero; Then, the expression becomes 0 i.e.


(0)/(1+\sin^2\theta) = 0

So,


\lim_((x,y) \to (0,0)) (x^2 \sin^2y)/(x^2+2y^2) = 0

User Leon Grapenthin
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories