Answer:
![\lim_((x,y) \to (0,0)) (x^2 \sin^2y)/(x^2+2y^2) = 0](https://img.qammunity.org/2022/formulas/mathematics/college/f27uf23qaayzfe052gmmsclyh6uym8cde5.png)
Explanation:
Given
![f(x,y) = (x^2 \sin^2y)/(x^2+2y^2)](https://img.qammunity.org/2022/formulas/mathematics/college/jt4fhzyz0qpomw02an3l80sk9q8hmx3cdj.png)
Required
![\lim_((x,y) \to (0,0)) f(x,y)](https://img.qammunity.org/2022/formulas/mathematics/college/fnenbj3hsrgfaqhq6wl9tk47oeqyzff21j.png)
becomes
![\lim_((x,y) \to (0,0)) (x^2 \sin^2y)/(x^2+2y^2)](https://img.qammunity.org/2022/formulas/mathematics/college/c405dehx45zom5vp77rxjlfxpkks5aaueo.png)
Multiply by 1
![\lim_((x,y) \to (0,0)) (x^2 \sin^2y)/(x^2+2y^2)\cdot 1](https://img.qammunity.org/2022/formulas/mathematics/college/eeei774ijh94me0b3el62omt50heytu0gd.png)
Express 1 as
![(y^2)/(y^2) = 1](https://img.qammunity.org/2022/formulas/mathematics/college/djcr0e4487x7l6syzuioy8xzxnlymczm7q.png)
So, the expression becomes:
![\lim_((x,y) \to (0,0)) (x^2 \sin^2y)/(x^2+2y^2) \cdot (y^2)/(y^2)](https://img.qammunity.org/2022/formulas/mathematics/college/sh6jmmzlhla3chmbej87n6qegbiqrxblcb.png)
Rewrite as:
![\lim_((x,y) \to (0,0)) (x^2 y^2)/(x^2+2y^2) \cdot (\sin^2y)/(y^2)](https://img.qammunity.org/2022/formulas/mathematics/college/qmxu7dlqcye04ebz06qrbr0k9tugyts8e9.png)
In limits:
![\lim_((x,y) \to (0,0)) (\sin^2y)/(y^2) \to 1](https://img.qammunity.org/2022/formulas/mathematics/college/lgl6zcn4wtn6ssgicoahbzdckpxaz0u2xz.png)
So, we have:
![\lim_((x,y) \to (0,0)) (x^2 y^2)/(x^2+2y^2) *1](https://img.qammunity.org/2022/formulas/mathematics/college/3cxnz0256tgshjgkd3eccljhn5rm9i3rq1.png)
![\lim_((x,y) \to (0,0)) (x^2 y^2)/(x^2+2y^2)](https://img.qammunity.org/2022/formulas/mathematics/college/9k1nab5swyditweot3l0jx8m2i28sxpy0i.png)
Convert to polar coordinates; such that:
![x = r\cos\theta;\ \ y = r\sin\theta;](https://img.qammunity.org/2022/formulas/mathematics/college/aze2qsrbmnv2e9e5bgrib9o09jsgbnrhad.png)
So, we have:
![\lim_((x,y) \to (0,0)) ((r\cos\theta)^2 (r\sin\theta;)^2)/((r\cos\theta)^2+2(r\sin\theta;)^2)](https://img.qammunity.org/2022/formulas/mathematics/college/c4rnox57x4iag3otk2dql84we81b54bdfr.png)
Expand
![\lim_((x,y) \to (0,0)) (r^4\cos^2\theta\sin^2\theta)/(r^2\cos^2\theta+2r^2\sin^2\theta)](https://img.qammunity.org/2022/formulas/mathematics/college/meb136y417v2pdkmdznvcoutgt8im26kfc.png)
Factor out
![r^2](https://img.qammunity.org/2022/formulas/mathematics/college/fq8s2gzv4jzb7yz7gkm12r4n96s9ki0wup.png)
![\lim_((x,y) \to (0,0)) (r^4\cos^2\theta\sin^2\theta)/(r^2(\cos^2\theta+2\sin^2\theta))](https://img.qammunity.org/2022/formulas/mathematics/college/cuxy23ohem96ef5hnmhbkhhbfq2bcreu6k.png)
Cancel out
![r^2](https://img.qammunity.org/2022/formulas/mathematics/college/fq8s2gzv4jzb7yz7gkm12r4n96s9ki0wup.png)
![\lim_((x,y) \to (0,0)) (r^2\cos^2\theta\sin^2\theta)/(\cos^2\theta+2\sin^2\theta)](https://img.qammunity.org/2022/formulas/mathematics/college/kcz2ip0naxpek0bnaxuveqk0y3ip3jda8c.png)
![\lim_((x,y) \to (0,0)) (r^2\cos^2\theta\sin^2\theta)/(\cos^2\theta+2\sin^2\theta)](https://img.qammunity.org/2022/formulas/mathematics/college/kcz2ip0naxpek0bnaxuveqk0y3ip3jda8c.png)
Express
as
![\sin^2\theta+\sin^2\theta](https://img.qammunity.org/2022/formulas/mathematics/college/i5q6p8ufo2o93qyu4x85qkqd9ho2r9ikn6.png)
So:
![\lim_((x,y) \to (0,0)) (r^2\cos^2\theta\sin^2\theta)/(\cos^2\theta+\sin^2\theta+\sin^2\theta)](https://img.qammunity.org/2022/formulas/mathematics/college/cl6gylu3g8n5o05j566gorimpkmq80t6s6.png)
In trigonometry:
![\cos^2\theta + \sin^2\theta = 1](https://img.qammunity.org/2022/formulas/mathematics/college/q5b0n2oruvu2jxhuqu4c42ojpdwmcihpke.png)
So, we have:
![\lim_((x,y) \to (0,0)) (r^2\cos^2\theta\sin^2\theta)/(1+\sin^2\theta)](https://img.qammunity.org/2022/formulas/mathematics/college/gcxvftqxkokwshcrirgvhyjngpr1gfpnfm.png)
Evaluate the limits by substituting 0 for r
![(0^2 \cdot \cos^2\theta\sin^2\theta)/(1+\sin^2\theta)](https://img.qammunity.org/2022/formulas/mathematics/college/7aszsuw9mk6jtcwjrz2l6mk1xofo90lxtx.png)
![(0 \cdot \cos^2\theta\sin^2\theta)/(1+\sin^2\theta)](https://img.qammunity.org/2022/formulas/mathematics/college/3l5pr7ggcqzqk815hv4ywhywqybopzx7rq.png)
![(0)/(1+\sin^2\theta)](https://img.qammunity.org/2022/formulas/mathematics/college/88yf2drzs089yw2xfvwh8fb43iyid0d38m.png)
Since the denominator is non-zero; Then, the expression becomes 0 i.e.
![(0)/(1+\sin^2\theta) = 0](https://img.qammunity.org/2022/formulas/mathematics/college/6cnfgd38z34q6mr61xa0tyndw6s9n5or1r.png)
So,
![\lim_((x,y) \to (0,0)) (x^2 \sin^2y)/(x^2+2y^2) = 0](https://img.qammunity.org/2022/formulas/mathematics/college/f27uf23qaayzfe052gmmsclyh6uym8cde5.png)