235k views
0 votes
Find the limit of f as or show that the limit does not exist. Consider converting the function to polar coordinates to make finding the limit easier. f(x,y)

User Garvin
by
5.1k points

1 Answer

2 votes

Answer:


\lim_((x,y) \to (0,0)) (x^2 \sin^2y)/(x^2+2y^2) = 0

Explanation:

Given


f(x,y) = (x^2 \sin^2y)/(x^2+2y^2)

Required


\lim_((x,y) \to (0,0)) f(x,y)


\lim_((x,y) \to (0,0)) f(x,y) becomes


\lim_((x,y) \to (0,0)) (x^2 \sin^2y)/(x^2+2y^2)

Multiply by 1


\lim_((x,y) \to (0,0)) (x^2 \sin^2y)/(x^2+2y^2)\cdot 1

Express 1 as


(y^2)/(y^2) = 1

So, the expression becomes:


\lim_((x,y) \to (0,0)) (x^2 \sin^2y)/(x^2+2y^2) \cdot (y^2)/(y^2)

Rewrite as:


\lim_((x,y) \to (0,0)) (x^2 y^2)/(x^2+2y^2) \cdot (\sin^2y)/(y^2)

In limits:


\lim_((x,y) \to (0,0)) (\sin^2y)/(y^2) \to 1

So, we have:


\lim_((x,y) \to (0,0)) (x^2 y^2)/(x^2+2y^2) *1


\lim_((x,y) \to (0,0)) (x^2 y^2)/(x^2+2y^2)

Convert to polar coordinates; such that:


x = r\cos\theta;\ \ y = r\sin\theta;

So, we have:


\lim_((x,y) \to (0,0)) ((r\cos\theta)^2 (r\sin\theta;)^2)/((r\cos\theta)^2+2(r\sin\theta;)^2)

Expand


\lim_((x,y) \to (0,0)) (r^4\cos^2\theta\sin^2\theta)/(r^2\cos^2\theta+2r^2\sin^2\theta)

Factor out
r^2


\lim_((x,y) \to (0,0)) (r^4\cos^2\theta\sin^2\theta)/(r^2(\cos^2\theta+2\sin^2\theta))

Cancel out
r^2


\lim_((x,y) \to (0,0)) (r^2\cos^2\theta\sin^2\theta)/(\cos^2\theta+2\sin^2\theta)


\lim_((x,y) \to (0,0)) (r^2\cos^2\theta\sin^2\theta)/(\cos^2\theta+2\sin^2\theta)

Express
2\sin^2 \theta as
\sin^2\theta+\sin^2\theta

So:


\lim_((x,y) \to (0,0)) (r^2\cos^2\theta\sin^2\theta)/(\cos^2\theta+\sin^2\theta+\sin^2\theta)

In trigonometry:


\cos^2\theta + \sin^2\theta = 1

So, we have:


\lim_((x,y) \to (0,0)) (r^2\cos^2\theta\sin^2\theta)/(1+\sin^2\theta)

Evaluate the limits by substituting 0 for r


(0^2 \cdot \cos^2\theta\sin^2\theta)/(1+\sin^2\theta)


(0 \cdot \cos^2\theta\sin^2\theta)/(1+\sin^2\theta)


(0)/(1+\sin^2\theta)

Since the denominator is non-zero; Then, the expression becomes 0 i.e.


(0)/(1+\sin^2\theta) = 0

So,


\lim_((x,y) \to (0,0)) (x^2 \sin^2y)/(x^2+2y^2) = 0

User Leon Grapenthin
by
6.0k points